ZnO is a wide direct bandgap (3.4 eV) semiconductor with promising electronic properties potentially useful in room temperature optoelectronic and spintronic devices. It can be used as a dilute magnetic semiconductor by tuning intrinsic or extrinsic magnetic defects while ZnO also demonstrates many unique surface effects such as a photogenerated metallic state. Imperative to utilizing these...
Compounds of the form $\rm{A}_2\rm{X}_2\rm{O}_7$ with the pyrochlore structures can exhibit classical or quantum spin ice behaviour if the crystal field environment of the $\rm{A}\rm{O}_8$ arrangement leads to the [111] easy-axis anisotropy. When Pr occupies the A-site, there is a low-lying electronic doublet and $\rm{Pr}_2\rm{X}_2\rm{O}_7$ compounds are found to be quantum spin ices$^1$....
Muons are the main component of cosmic ray particles on the earth, and most of the cosmic ray muons are injected into water or ice, which occupy more than 70% of the earth's surface. When negative muons ($\mu$$^-$) stop in H$_2$O, they are mainly trapped by oxygen nuclei and form muonic oxygen atoms O$\mu$$^-$, and about 15% of O$\mu$$^-$ atoms finally change to stable nitrogen isotopes...
In muon spin spectroscopy, the knowledge of muon implantation sites and hyperfine couplings is of importance to the analysis of the experimental data. Over the past decade there has been significant progress in calculating muon sites using first-principles methods such as density functional theory (DFT) [1,2]. However, the protocols required for muon calculations are both resource and task...
In a continuous beam muon facility positrons are detected by relatively large plastic scintillators without position sensitivity. An idea has been proposed to make these positron detectors multi-channel and able to track the positron trajectories. This will ultimately enable 2-dimensional magnetic imaging of the sample with the µSR technique. To attain this “muon microscope” idea, large...
Accelerated by the discovery of graphene, research on two-dimensional (2D) materials have attracted tremendous attention both from fundamental and applied sciences. Among the large number of 2D materials, chromium trihalides CrX3 (X = Cl, Br, I) van der Waals (vdW) magnets have also raised a large interest due to the existence of many magnetic subtleties that cannot be explained by their...
Superconductivity with a critical temperature $T_C$ $\sim$ 5.25 K was recently reported in the Cr-based superconductor Pr$_3$Cr$_{10-x}$N$_{11}$. The large upper critical field $H_{C2}$ $\sim$ 20 T, and the strong correlation between 3$d$ electrons derived from specific heat, suggest the unconventional superconductivity nature of this compound. We performed muon-spin rotation/relaxation...
Negative muons are often overlooked compared to their positive counterpart, partly due to the loss of around $\frac{5}{6}$ of the $\mu^{-}$ spin polarisation when a $\mu^{-}$ cascades down to the 1s muonic ground state after being captured by a nucleus. One needs to count for around 36 times as long to get statistics comparable to that of a $\mu^{+}$SR experiment. However, there has been a...
Silicon carbide (4H-SiC) is a wide-bandgap semiconductor with promising applications in high-power and high-frequency devices. An advantage of SiC is that it is the only compound semiconductor that has the ability to form native silicon dioxide (SiO$_2$). The performance of SiC-based devices relies heavily on interface effects. However, characterization of oxidation-induced defects - both in...
Today, the technology of magnetic resonance imaging (MRI) has been established and it is essential in the medical field. MRI is the method of making an in-situ image by utilizing nuclear magnetic resonance (NMR). However, the MRI technique has rarely been put to practical use for elements other than hydrogen because of the sensitivity issue. On the other hand, the technique of...
The interplay of superconductivity with nontrivial topological phases exhibit the fascinating topological superconductivity, which has attracted widespan attention from observing quasiparticle like Majorana fermions to its application in fault-tolerant quantum computation$^{1,2}$. It is proposed that the topological superconductivity can be realized in compounds having topological surface...
The Kondo effect was a longstanding theoretical puzzle, describing the scattering of conduction electrons in a metal due to dilute, localised d- or f -electron magnetic impurities and resulting in a characteristic minimum in electrical resistivity with temperature. Extended to a lattice of magnetic impurities, the Kondo effect likely explains the formation of so called heavy Fermion systems...
The key physical process at the heart of the muon-spin rotation ($\mu$SR) technique is that the spin of the positive muon precesses in a local magnetic field, a process that can be modelled either classically (torque on a magnetic dipole) or quantum mechanically (interference between components in a superposition). However, some aspects of the muon's interaction with its environment bring out...
For unambiguous interpretation of experimental µSR data, a thorough understanding of quantum zero-point motion (ZPM) of muons in materials is essential. Namely, while ZPM of light nuclei like hydrogen and lithium is known to play a pivotal role in the structure and dynamics of many important classes of materials$^{1,2}$, quantum effects of muons in solids can be even stronger due to the lower...
Our goal is to analyze the magnetic properties of the Kitaev material Na$_{2}$PrO$_{3}$ by comparing Neutron Scattering (NS) and Muon Spin Spectroscopy (μSR) experiments, with the addition of ab initio calculations.
Alkali-metal lanthanide oxides are an exciting field of study due to their frustrated geometry and possibly anisotropic magnetic interactions, as shown in Fig.1....
Resonant Inelastic X-rays Scattering (RIXS) is an energy loss spectroscopy made with x rays whose energy is tuned to a suitable absorption edge. When the instrumental resolution is good enough, RIXS spectra provide information on the energy, dispersion and symmetry of local and collective excitations, such as ligand field excitations, magnons and paramagnons, phonons, particle-hole pairs,...
The rare-earth nickelates (RNiO$_3$) are a prototypical example of a metal-insulator transition. Among the RNiO$_3$, LaNiO$_3$ is unique in remaining metallic, although highly correlated. Interestingly, superlattices with insulating interlayers of LaAlO$_3$, can be driven insulating and antiferromagnetic if they are thin enough$^{1}$. We have used $^8$Li $\beta$-detected NMR ($\beta$-NMR), to...
Zero-field muon spin relaxation experiments probe directly the intrinsic magnetic fields that arise spontaneously in a given material. The full understanding of such experiments requires a microscopic description of the material under investigation, including its electronic state and the complex interactions between the muon and the material’s electronic and structural degrees of freedom....
The kagome lattice, the most prominent structural motif in quantum physics, benefits from inherent nontrivial geometry to host diverse quantum phases, ranging from spin-liquid phases, topological matter to intertwined orders, and most rarely unconventional superconductivity. Recently, charge sensitive probes have suggested that the kagome superconductors AV3Sb5 (A = K, Rb, Cs) [1] exhibit...
After two decades of research, the symmetry of the superconducting state in Sr$_2$RuO$_4$ is still under strong debate. The long time favoured spin-triplet px + i py state is ruled out by recent NMR experiments (1). However, in general time-reversal-symmetry breaking (TRSB) superconductivity indicates complex two-component order parameters. Probing Sr$_2$RuO$_4$ under uniaxial pressure offers...
The novel superconductor UTe$_2$ is a rare material wherein electrons form Cooper pairs in a unique spin-triplet state with potential topological properties. Theoretically, spin-triplet superconductivity in UTe$_2$ may be explained in terms of pairing mediated by either ferromagnetic or antiferromagnetic fluctuations, but experimentally the magnetic properties of UTe$_2$ remain enigmatic. Here...
We have developed an elemental analysis technique with muonic x-ray on a Li-ion battery, taking advantages of muon and muonic x-rays, that is, accessibility of negative muons and high energy of muonic x-rays[1,2]. Especially, intense negative muon with low momentum at J-PARC enables us to investigate electrodes in Li-ion battery. There is no non-destructive method to observe Li directly deep...
The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. In particular, according to the standard picture, in a sample of type-II materials of a planar geometry in a parallel (in-plane) field, superconductivity nucleates at Hc3 approximately twice as big as the...
Ion transport in solids is a key feature for the operation of ion batteries. There are two parameters for describing ion transport in battery materials; one is a self-diffusion coefficient ($D^J$) and the other is a chemical diffusion coefficient ($D^C$). The former diffusion is caused by thermally activated fluctuation of ions, while the latter diffusion is caused by a flow due to a...
It is important to measure the temperature of the muon-production rotating target (hereinaf-ter referred to as "rotating target") in order to detect problems of rotating target quickly.
Thermocouples have been installed on the cooling jacket to measure the temperature rise due to thermal radiation from the rotating tar-get. Since the time constant of the thermocou-ples is on the order of...
The mother material of the La-based high-Tc superconducting oxides, La2CuO4(LCO), which family of materials possesses a d9 electronic configuration for copper ions, acts as a three-dimensional antiferromagnetic Mott insulator. LCO has been well investigated experimentally and theoretically in the past, but there are still questions on electromagnetic states to be...
We report muon spin rotation ($\mu$SR) studies of the superconducting properties as a function of chemical and hydrostatic pressure on the cubic ternary intermetallic (Ca$_{x}$Sr$_{1-x}$)$_{3}$Rh$_{4}$Sn$_{13}$ compounds, which feature strong coupling phonon-mediated BCS superconductivity and a structural phase transition a critical pressure p$_c$ associated with a charge density wave (CDW)...
The intermetallic compound MnSi exhibits a number of properties that have attracted strong interest. In particular it magnetically orders below 29.5 K to an exotic long-pitch helical structure. This type of order is due to the presence of the Dzyaloshinskii-Moriya interaction, authorized by the absence of inversion symmetry in the crystal structure, that coexists with a dominant ferromagnetic...
Bond-dependent interactions between magnetic moments can lead to strong frustration and nontrivial ground states. In particular, the Kitaev-Heisenberg model has a rich phase diagram and can host a spin liquid state or different frozen states depending on the strength of the additional Heisenberg interactions. Experimentally, such phase diagrams can be explored by modifying the relative...
We present a joint muSR and ab-initio study of the hydrogen impurity in magnesium oxide (MgO). Muon spin rotation measurements at magnetic high-fields reveal the presence of a diamagnetic configuration and of a muonium state, confirming an hyperfine interaction of 3.9(1) GHz at T=6K [1]. The temperature dependence of these states is followed up to room temperature, revealing a conversion of...
[[Fig. 1 ($MnBi_2Te_4$) ($Bi_2Te_3$)n Zero Field μSR asymmetries vs. time at different temperatures][Fig1]
Time-reversal symmetry breaking in a topological insulator (TI) opens a surface gap and distinguishes chiral quantum states that could eventually be exploited in electrically controlled spintronic devices. The new approach to this state in a TI is with the intrinsic magnetic proximity of...
Metal hydrides have attracted attention as one of the candidate materials that can serve as safe and efficient hydrogen (H) storages. In particular, MgH$_2$ has great potential as a solid H-storage material because of its high storage capacity of 7.6 wt\%. However, its slow hydrogenation and dehydrogenation rates and the high decomposition temperature ($\sim$300$^\circ$C) are major obstacles...
A nano-size effect on magnetic materials shows novel and causes the magnetic properties different from those observed in a bulk form. The nano-size effect has been well investigated in metals but not yet explored in the high-Tc superconducting oxides. La2CuO4 (LCO) is a parental compound of La-based high-Tc superconducting cuprates which have a long-range...
$\mathrm{LiFePO}_4$ (LFPO) is an archetypical and well-known cathode material [1] for rechargeable Li-ion batteries. However, its quasi-one-dimensional (Q1D) structure (see Figure) along with the Fe ions, LFPO also displays interesting low-temperature magnetic properties [2]. At ambient pressure LFPO display an antiferromagnetic (AFM) spin order below $T_N = 53\;\mathrm{K}$ and neutron...
Ionic liquids (ILs) are a class of molten salts which are liquid at room temperature. Their properties are determined by strong electrostatic forces and generally include low volatility, negligible vapour pressure, and a low melting point. This makes them attractive candidates for improving battery and capacitor technology. The device effectiveness, however, is often determined by the ion...
Muon induced X-ray emission is a powerful technique for non-destructive elemental analysis for bulk material. This method have developed as practical quantitative analysis at J-PARC, and in present, this method have been applied for various samples, such as archeological artefacts, meteorite and so on.
In this paper, we report the results of applying this method to medical heritage in Japan....
A muonic atom is formed when a muon is captured in an atom system, and characteristic muonic X-ray emission occurs with the muon deexcitation process. The chemical composition of a material can be known based on the intensities of the emitted muonic X-rays. Non-destructive elemental analysis using negative muon beam has been highly developed in the last decade. This method provides a powerful...
In recent years, there have been increasing opportunities to consider about energy issues on a global scale, and the development of energy-saving technologies in various fields is highly desired. It is known that Fe-Cu-Nb-Si-B nanocrystalline alloy, so-called FINEMET(R), have higher magnetic flux density, higher linearity, and higher temperature stability than conventional materials....
The CaCu$_3$Ti$_{(4-x)}$Ru$_{(x)}$O$_{12}$ family, synthesized under high pressure (7.7 GPa) belongs to the perovskite class of materials. The ground state of the extremes of this solid solution are antiferromagnetic insulator for the x = 0 member, and itinerant-electron system, i.e., Pauli-paramagnetic metal, for the x = 4 member respectively [1,2]. The suppression of magnetic ordering...
Using negative muon emission spectroscopy (µXES) can yield unique information by determining the composition beneath the surface whilst being completely non-destructive and has been shown to be a powerful technique for non-destructive analysis of the elemental composition of precious/rare samples. The characteristic muonic X-rays emitted after muon implantation can be used as fingerprints to...
Frustrated magnetism continues to be a vibrant area of research in chemistry and condensed matter physics. Geometric frustration arises when the magnetic degrees of freedom are incompatible with the underlying lattice geometry, and contrasts conventional magnetism because the system exhibits numerous degenerate ground states. Hence, rich exotic phenomena are observed as a function of pressure...
In an all solid state Li-ion battery, it is crucial to reduce ionic resistivity at the interface between the electrode and the electrolyte in order to enhance Li+ mobility across the interface, because Li$^+$ ions naturally drift across such interface. In particular, recent first principles calculations predict the presence of a space-charge layer (SCL) at the interface because of the...
Ultracold muonium (UCMu) is an important muonium (Mu) source for the generation of ultraslow muon beam [1-3] for nanotechnological applications and understanding hydrogen dynamics in materials. In order to search a new solid material for the generation of UCMu in vacuum, we have studied n-Si [4], SiC and KCl at low temperatures (5 K – 300 K) using conventional $\mu$SR method. The relaxation...
The hole-doped organic superconductor $\kappa$-(ET)$_{4}$Hg$_{3-\delta}$Br$_{8}$, ($\kappa$-HgBr), where $\delta$=11% and
ET=bis(ethylenedithio)tetrathiafulvalene, has been the key to bridge the knowledge gap between half-filled organics and doped cuprate systems. Nonetheless, the isotropic triangular lattice of ET dimers of $\kappa$-HgBr, unlike the square lattice in cuprates, is suspected...
Understanding the complex ways that battery materials change on charging and discharging is vital for improving their function in operation, but traditional ex-situ muon measurements have barely scratched the surface of this deep mine of information. Here, we present an electrochemical cell that enables ionic diffusion measurements using muon spectroscopy (μSR) at the ISIS Neutron and Muon...
The recently reported electrochemical sugar recognition system consisting of a nano-sized gold particle (GNP) with a diameter of 10 nm, a ruthenium complex and a pheylboronic acid, attracts much interest because of its high sensitivity for various sugars such as D-glucose or D-fructose. When sugar molecules are attached to the phenylboronic site, the response of electrochemical voltammetry of...
We present high magnetic field $\beta$NMR measurements of $^8$Li$^+$ implanted in single crystals of sapphire, a commonly used backing material for other samples. From the well-resolved quadrupolar splitting, we extract the electric field gradient (EFG) at the implanted $^8$Li$^+$ site. Comparison with supercell density functional theory calculations of the EFG allows us to identify the...
This paper reports the development of a novel technique using spin polarised positive muons to probe local charge redistributions within polymeric dielectrics under externally applied E-fields (EEF’s). These materials are used in many high voltage applications, and knowledge of charge dynamics is crucial to their successful use, as it dictates their ultimate ability to function as a...
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. Recently, we explored magnetic correlations in the kagome magnet Co$_{3}$Sn$_{2}$S$_{2}$ [1]. Using muon spin-rotation (${\mu}$SR) and ARPES, we present evidence for competing magnetic orders in the...
The convergence of two major research strands in modern condensed-matter physics: topological materials and unconventional superconductivity, constitutes a new field of study. Topological materials with Kramers or hourglass fermions represent a special subclass, recently realized in materials lacking inversion symmetry or with a nonsymmorphic space group. At the same time, there is a surge of...
Cuprate high-temperature superconductors have complex phase diagrams with multiple competing ordered phases. Understanding to which degree charge, spin, and superconducting orders compete or coexist is paramount for elucidating the microscopic pairing mechanism in the cuprate HTSs. In this talk, I will report some novel results of muon-spin rotation (µSR) and AC susceptibility experiments on...
In the present work, we investigate the spin dynamics of one-dimensional spin-integer molecular nanomagnets ((CH$_3$)$_2$NH$_2$)V$_7$MF$_8$(O$_2$CtBu)$_ {162}$C$_7$H$_8$, with M=Ni/Mn, in short V$_7$M [1,2,3], by means of magnetization, susceptibility and MuSR measurements. These heterometallic nanomagnets contain seven vanadium ions (s=1) and one Ni$^{2+}$ (s=1) or Mn$^{2+}$ (s=5/2) ion,...
Typically, the solid state is not well suited to sustaining fast molecular motion - however, in recent years a variety of molecular machines, switches and rotors have been successfully engineered within porous crystals and on surfaces. Here, we report on a combined $^{1}$H-NMR [1] and $\mu$SR [2] study of fast-rotating molecular rotors within the bicyclopentane-dicarboxylate struts of a...
Batteries are a key-technology for accelerating decarbonization. The benefits of the development of advanced batteries are enormous: broader energy access, specifically for off-grid communities, the transport electrification that reduce the dependency from fossil fuels and the harmful local emission of nanoparticulates, better utilization of intermittent energy sources [1]. Europe has decided...
When positive muons (µ+) are implanted in insulating materials, they capture electrons to form muonium (Mu), a light isotope of H. This process makes muon spin resonance technique (µ SR) suitable for studying H interaction with matter, for example in hydrogen storage (HS) materials.
Among carbon-based materials, recently metal intercalated fullerides demonstrated to be promising for HS,...
The slow muons technique provides a quantitative approach to characterize the effect of various cover layers on the passivation of bulk defects near the p-n junction of solar cells [1].
Several cover layers on top of the chalcopyrite Cu(In,Ga)Se2 (CIGS) semiconductor absorber were investigated in this work, namely CdS, ZnSnO, Al2O3 and SiO2.
The figure shows the depth profile of a...
A positive muon spin rotation and relaxation ($\mu^{+}$SR) has been widely used for assorted materials to study a microscopic internal magnetic field. However, the counterpart technique, $\mu^{-}$SR, is less common mainly due to a small asymmetry of the $\mu^{-}$SR signal, typically 1/6 to that of $\mu^+$SR, caused by the loss of the spin polarization during a capture process of $\mu^-$ by...
Thin films of rare-earth metal oxyhydrides, such as yttrium oxyhydrides (YH$_{3-2x}$O$_x$), show a pronounced photochromic effect where the transparency of the films decreases reversibly over a large range of sub-bandgap wavelengths upon exposure to UV light. This makes these materials suitable candidates for applications in smart windows. However, the exact mechanism behind the photochromic...
While Li-ion batteries are considered the main candidate for mobile applications, compounds based on lithium’s heavier cousin, sodium (Na) have also started to receive a lot of attention lately as candidates for future batteries. One reason is that the Li-reserves are limited and if large scale energy storage become a reality in our future sustainable society, we might have to consider...
J-PARC MUSE is responsible for the inter-university user program and the operation, maintenance, and construction of the muon beamlines, namely D-line, S-line, U-line, and H-line, along with the muon source at MLF.
At D-line, which provides the world’s most intense pulsed negative and positive muon beams, various scientific studies, including those on industrial applications, archeology, and...
This document breifly describes the mission, governnace, operations, infrastructure and future directions of TRIUMF’s CMMS. The current muon and beta-detected NMR experimental facilites are revisted and the status of a number of pending beamline projects and spectrometer instalations are introduced.
A Muon station for sciEnce, technoLOgy and inDustrY (MELODY) has been listed in the CSNS II upgrade plan, and the infrastructure construction is scheduled to start by the end of 2022. Up to 5Hz of proton pulses will be extracted from the RCS ring to a stand-alone target station. One surface muon and one decay muon beamline are designed to provide multi-terminals for applications. In this...
The Laboratory for Muon Spin Spectroscopy (LMU) at PSI develops and operates the six muon instruments of the Swiss Muon Source (SμS). We give an overview of the current status, with an update on the commissioning of the new FLAME instrument and the upgrade plan of the μE4 beamline to increase the rate of low-energy muons by 50% in 2025. Furthermore, a new experimental facility is under...
There are five muon instruments and two further experimental areas at ISIS including RIKEN-RAL, able to deliver both surface and decay muons appropriate for different experiments. Since June 2021 the whole muon facility has been in an extended shutdown as significant work has taken place on the accelerator, the muon collimator, and the Target Station 1 neutron target. We now expect muon beams...
Glasses occupy more volume than required for molecular close packing. The distribution of this ``free volume'' is related to other key properties such as dynamic heterogeneity (stretched exponential relaxation). As a glass ages, it equilibrates by thermally activated structural relaxation producing permanent densification with slowed relaxation times. Mechanical deformation can significantly...
Time-reversal symmetry breaking is a signature of unconventional superconductivity and can be observed from zero-field muon spin relaxation measurements as an increase of the muon relaxation rate through the superconducting transition temperature. Time-reversal symmetry breaking, although rare, has been observed in several noncentrosymmetric rhenium-based intermetallic superconductors...
We present an updated model for muonium properties and behavior in silicon carbide (polytype 6H; SiC) based on new (unpublished) and published results from our group’s TF-, LF-, RF- and photoexcited MuSR measurements.
SiC is known and widely used for structural ceramics due to its physical properties (e.g. high thermal conductivity; hardness; strength; resistance to corrosion and abrasion)...
Cadmium oxide is a transparent conducting oxide (TCO) that has many applications in optoelectronic devices, such as solar cells, photo transistors and diodes. CdO is a naturally n-type TCO with hydrogen acting as a shallow donor. MuSR zero field measurements were collected, from 20 K to 800 K, to investigate the diffusion properties of positive Mu defects in a CdO powder sample. The neutral Mu...
Tin oxide is a transparent conducting oxide (TCO) that has many applications in optoelectronic devices, such as solar cells and LED’s. Tin oxide is naturally n-type with hydrogen acting as a shallow donor. MuSR zero-field measurements were taken on a single crystal sample from 2 K to 710 K in a closed cycle refrigerator and from 300 K to 1080 K in an optical furnace. The zero-field...
When a negatively charged muon stops in a material, the muon makes muon atomic orbitals around an atomic nucleus in the material. The muon orbiting its 1s orbital is absorbed into the nucleus with a mean lifetime depending on the atomic number of the nucleus (Z). This no-electron-emission process competes with the natural decay of the muon into an electron with a lifetime of 2.2 μs. The...
Reduction of the momentum width in the muon beam is required in particle physics and material science. A small-momentum-width muon beam so called ultra-slow muon beam can be realized by laser ionization of muonium which can be produced by stopping of surface muons in a solid target and thermally diffusing them. Such an ultra-slow muon generation technique reduces the momentum width to about...
Spin lattice relaxation is the simplest type of $\beta$NMR measurement. The usual approach is to implant a pulse of hyperpolarized nuclei and monitor the time-resolved $\beta$-decay asymmetry, yielding the ensemble average spin-lattice relaxation. In the simplest case, the asymmetry decays exponentially with a characteristic time constant $T_1$, but this ideal is rarely obtained in practice....
Silicon carbide (4H-SiC) is a wide-bandgap semiconductor with applications in high power devices. Epitaxial growth of SiC is crucial to produce structures with controlled thickness and doping concentration. Ion implantation with nitrogen (N) and phosphorus (P), on the other hand, is used to create spatially defined n-type regions in SiC. Implantation is usually followed by a post-implantation...
The Meissner state (MS) is the state with the most pronounced superconducting properties. Therefore, knowledge and understanding properties of the MS is a necessary condition to understand and predict properties of all other states of all superconductors. The standard interpretation of the MS is based on the theory of F. and H. London, with minor modifications adopted in the Ginzburg-Landau...
Gallium oxide $\beta$-Ga$_2$O$_3$ is currently drawing much attention as a material for high-voltage power devices because of its large band gap ($E_\mathrm{g}\sim$4.9 eV). We investigated the electronic structures of muon as a pseudo-hydrogen in $\beta$-Ga$_2$O$_3$ in which the dilute hydrogen is under the central focus as a crucial factor for the bulk conducting properties. We demonstrate by...
Fe4Si2Sn7O16 displays an undistorted kagome lattice of Fe2+ (3d6, S = 2) ions. We present results of DC-pulse-field magnetisation up to 50 T, Nuclear Magnetic Resonance (NMR), AC-susceptibility and muon-spin-resonance (µSR) measurements down to 19 mK on powder sample of Fe4Si2Sn7O16. The magnetization measurement at 2 K excludes the presence of strong Ising anisotropies. In the temperature...
Electronic correlations play a key role in tuning the properties of parent- and doped (superconducting) iron pnictides, ultimately determining their respective ground states. Parent compounds with magnetic doping are particularly intriguing, since dopant coupling via Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions depends significantly on the strength of electronic correlations, which...
Fundamentally, what distinguishes a superconducting state from a normal state is a spontaneously broken symmetry corresponding to the long-range coherence of Cooper pairs, leading to zero resistivity and diamagnetism.
Here we report a set of thermodynamic, transport and muon spectroscopy observations on a series of hole-doped Ba$_{1−x}$K$_x$Fe$_2$As$_2$. Our specific-heat measurements...
The arrangement of magnetic moments at the vertices of a pyrochlore lattice - composed of corner-sharing tetrahedra - leads to a great variety of electronic ground states for $R_{2}M_{2}$O$_{7}$ materials. Here, we present an in-depth analysis of muon-spin spectroscopy measurements of Eu$_{2}$Ir$_{2}$O$_{7}$ under the effect of the Eu$_{1–x}$Bi$_{x}$ isovalent and diamagnetic substitution [1]...
Theoretical study using density functional theory (DFT) calculations supports to estimate the stopping site of muon in materials and understand the muon spin rotation and relaxation ($\mu$SR) measurements. To understand the temperature dependent zero-field (ZF) $\mu$SR measurement in water, we have performed DFT calculations and quantum simulation to estimate the muon sites in hexagonal (Ih)...
Na$_2$Ni$_2$TeO$_6$ honeycomb layered oxide has suitable properties for use as a Na-ion battery cathode material. The substitution of Ni with Co has been shown to have a detrimental effect on the energy density of Na$_2$Ni$_2$$_-$$_x$Co$_x$TeO$_6$, whereas the plateau potential vs Na$^+$/Na increases. Thus, to ascertain the cause of the electrochemical properties change upon substituting Ni...
$\mu^+$SR is used in various research fields as a sensitive local magnetic probe. Although the implanted $\mu^+$ stop at interstitial sites in the crystal, it is often difficult to determine the sites precisely. On the other hand, the implanted $\mu^-$ are captured by nuclei and have different lifetimes for each nuclide. Thus, the $\mu^-$ position is unambiguously determined by measuring the...
During the $\mu^-$SR measurements on Li-ion battery materials, a part of implanted $\mu^-$ is naturally captured by Li nucleus, leading to the formation of muonic-Li species in target materials. The past $\mu^-$SR study on Li metal shows the lack of relaxation in the TF-$\mu^-$SR spectrum at room temperature [1], despite the presence of large nuclear magnetic fields at the muonic-Li position...
In our efforts to help the earth recover from ecological burnout we have been trying to bridle the sun’s energy since 1954, when the first practical silicon solar cell was introduced. Today we are researching for ever higher efficiencies, while we try to make use of earth-abundant materials. Perovskite solar cells are promising candidates for next generation photovoltaic technology due to...
J-PARC MUSE is responsible for the inter-university user program and the operation, maintenance, and construction of the muon beamlines, namely D-line, S-line, U-line, and H-line, along with the muon source at MLF.
At D-line, which provides the world’s most intense pulsed negative and positive muon beams, various scientific studies, including those on industrial applications, archeology, and...
The surface muon beamline (S-Line) in the experimental hall No.1 of the Materials and Life science experimental Facility (MLF), J-PARC is designed to provide low-energy muon beam, which is mainly utilized by materials and life science experiments. The final goal of S-Line is a beamline with four experimental areas from S1 to S4, of which the first experimental area S1 started in 2017 for user...
This work describes the new M9H muon decay channel at TRIUMF, which is specifically designed to deliver high quality transversely spin polarized beams. Transverse polarizations in both X and Y of ~80% over the momentum range 70-120MeV/c are expected. In contrast to a traditional z-polarized decay beam the key to accomplishing this task lies in the extraction an off-centre momentum-canted...
Ga$_2$O$_3$ is an emerging wide-gap semiconductor with a broad variety of applications, from transparent conduction to high voltage applications, therefore considered as a possible replacement for SiC. Its alpha polymorph, which can be grown in bulk crystalline form, is intensely investigated. An important technological development relies on the growth of thin film of the epsilon polymorph,...
The low energy $\mu$SR (LE-$\mu$SR) spectroscopy is primarily used to study thin films, surfaces, and interfaces of materials. However, because of the large beam spot and low implanted muons rate, LE-$\mu$SR measurements on small samples are difficult, requiring an optimal sample area of $ 25\times25$ mm$^2$. Recently, we have boosted our ability to measure small samples, down to $5 \times 5$...
The D-line of the J-PARC MLF MUSE has a pion decay section, which makes it possible to use decay muons. The superconducting solenoid magnet used in the pion decay section has a large bore and thus produce the world's highest positive and negative muon intensities. Since the D-line is currently the only beamline at MUSE where practical negative muon intensity is available, various user...
In the late 1970s and 1980s $\mu^+$spin rotation experiments were performed elaborately to study $\mu^+$ diffusion and trapping in Fe and Fe alloys. In Fe alloys not many experiments were performed, probably because the unavoidable inhomogeneity of the magnetization in ferromagnetic Fe alloys bring about the fast dephasing of spin rotation and may obscure the diffusion and trapping effects....
One of the key challenges in the condensed matter research field is understanding the pairing mechanisms that give rise to unconventional superconductivity. Transition metal dichalcogenides $MX_2$ ($M$ = Nb, Ti, Ta, Mo and $X$ = S, Se) are a class of materials that have been shown to exhibit competition between a charge density wave (CDW) and superconducting state [ 1]. In ambient conditions,...
A positively charged muon implanted in copper sits at an octahedral interstitial site and experiences a magnetic dipolar coupling with six nearest-neighbour quadrupolar $I=3/2$ copper nuclei [1]. The resulting avoided level crossing resonance observed as a function of magnetic field [2] provides a means of studying these interactions and understanding the effect of the electric-field gradient...
Various $\mu^+$SR techniques have been widely used for studying internal magnetic fields in assorted materials [1], such as, antiferromagnets, spin-glasses, paramagnets, and superconductors. However, for ferromagnetic (FM) materials, $\mu^+$SR faces a difficulty in determining the correct dipole field at the muon site $({\bf H}_{\rm dip})$ because the internal magnetic field at the muon site...
The very first low-energy muon spin rotation (LE-$\mu^+$SR) study performed on LiTi$_2$O$_4$ films in the Meissner state is presented. LiTi$_2$O$_4$ is a unique spinel type superconductor in which the mechanism underlying superconductivity is highly debated [1]. LE-$\mu^+$SR is a direct probe for the characterization of depth dependent properties in thin films, which allowed us to extract...
This poster presents an overview of the software tools and techniques that have been developed as part of the Muon Spectroscopy Computational Project (MSCP). The MSCP is an initiative that currently includes: (a) the Muon Group at ISIS; (b) the Scientific Computing Department; (c) the UK Software Sustainably Institute and (d) Members of the [Galaxy][1] platform. The main objective of the...
Here, we report on the status of the setup, commissioning and first performance tests of the newest muSR instrument FLAME (FLexible and Advanced MuSR Environment) at PSI. Commissioning started in spring 2022 after the delivery of the superconducting experimental magnet.
FLAME is designed to allow ZF, LF and TF muSR measurements over a broad temperature range from 25mK to 300K with magnetic...
At J-PARC MLF, MUSE provides the world-highest flux of pulsed muon beams. U-Line, one of the four beamlines in the facility, features an intense surface muon beam from Super-Omega and Ultra-Slow Muon (USM) generated by laser ionization of thermal muonium in a vacuum. The beamline has two branches: U1A for muon spin spectroscopy using USMs and U1B for transmission muon microscope. The unique...
We have designed and constructed a thin film preparation chamber with base pressure of $<2 \times 10^{-9}$ mbar. Currently, the chamber (see figure) is equipped with two large area evaporators (a molecular evaporator and an e-beam evaporator), an ion sputtering gun, a thickness monitor and a substrate heater. It is designed such that it can handle large area thin film samples with a future...
We present a theoretical calculation for feasibility study of the Muon Microscope, which is intended to add positional resolutions within the sample by tracking down the positron trajectories to its source positions. In the presence of a magnetic field, any positrons whose trajectories have components which are perpendicular to the magnetic field will start to move in a helical path due to the...
For several decades the intermetallic compound MnSi has fascinated the community for different aspects of its physical and magnetic properties. Among these properties is the exotic temperature-magnetic field phase diagram. While this diagram was first established in the 1970s, the exact nature of one of the phases was only identified in 2009 as a lattice of magnetic skyrmions, i.e. a...
Low-dimensional magnetism continues to be of great theoretical and experimental interest, as reduced dimensionality supports strong fluctuations that can result in novel states and excitations. One theme in this field is the understanding of magnetism in reduced dimensions using notions from topology. Examples include topological objects such as walls, vortices and skyrmions, which can...
Fe$_2$P alloys have been proposed as promising for applications in magnetocaloric refrigeration due to their first-order magnetic transitions coupled to a magnetoelastic transition, which gives rise to a giant magnetocaloric effect in the vicinity of their Curie temperature [1]. The magnetic structure of Fe$_2$P has been investigated and known to order ferromagnetically, with magnetic moments...
MuSpinSim is a Python software to simulate muon ($\mu$SR) experiments. In particular, it simulates the spin dynamics of a system of a muon plus other spins such as electrons and atomic nuclei. MuSpinSim can simulate various common experimental setups used in $\mu$SR, such as zero, transverse and longitudinal field experiments; and it can simulate $\mu$SR experiments that are resolved in time,...
Two of the most fundamental limitations of the muon-spin spectroscopy ($\mu^+$SR) technique are the lack of knowledge of the muon stopping site, and the uncertainty surrounding the degree to which the muon distorts its local environment. Over the past decade there has been significant progress in calculating muon stopping sites using ab initio methods, particularly density functional theory...
In geometrically-frustrated Ce-based pyrochlores, such as Ce$_2$Zr$_2$O$_7$, the effective S=1/2 of the Ce3+ crystal field ground state doublet is known to act both as a conventional dipole magnetic moment, and as an octupole. This constrains the form of its near-neighbour Hamiltonian, and allows for different ordered or quantum disordered ground states in this family of materials, where...
The magnetic ground state of a quantum spin liquid (QSL) candidate compound, Lu$_2$Mo$_2$O$_{5-y}$N$_2$ oxynitride pyrochlore ($S=1/2$, Mo$^{5+}$), was investigated by muon spin rotation/relaxation experiment. In contrast to Lu$_2$Mo$_2$O$_7$ ($S=1$, Mo$^{4+}$) which exhibits a spin glass-like freezing of Mo moments below $T_g\simeq16$ K, no such spin freezing or long range magnetic order was...
The series of triangular compounds ACrO$_2$ is a model series for studying the Heisenberg model on S=3/2 (Cr$^{3+}$: half-filled t$_{2g}$ orbitals) triangular antiferromagnets and the impact of interlayer couplings on the dynamics. For this, we report µSR measurements on α-HCrO$_2$ and KCrO$_2$ [1] which complete former studies on the series of triangular compounds ACrO$_2$, A = Li , Na [2,...
The phrase ‘quantum spin liquid’ (QSL) refers to a system in which strong quantum fluctuations prevent long-range magnetic order from being established, even at temperatures well below any interaction energy scale. No spontaneous symmetry breaking is involved, nor a conventional local order parameter. Thus, it is not described using the Landau theory of phase transitions and constitutes a...
One might wonder: what do muons have to do with quantum computing? I will argue that environmental muons and ionizing radiation in general represent a source of noise and dissipation which until recently has been underestimated in the quantum devices community. I will present measurements performed in the deep-underground laboratory of Gran Sasso [1] which show a significant improvement in the...
A new method to measure the superconducting stiffness tensor ${\bar \rho _s}$, without subjecting the sample to magnetic field, is applied to La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) [1]. The method is based on the London equation $\mathbf{ J } = - \bar{{ \rho}}_\mathbf{s}\mathbf{ A}$, where $\mathbf{ J}$ is the current density and $\mathbf{ A}$ is the vector potential. Using rotor free $\mathbf{...
The Pd-Bi family of compounds has become quite popular system to explore topological superconductivity due to their intrinsic capability to maintain strong spin orbit coupling (SOC). Amongst various members of this family, $\alpha$-PdBi$_2$ turns out to be very promising due to its superconducting ($T_c$ = 1.7 K) as well as topological properties such as Dirac point at 1.26 eV below the Fermi...
The iron-chalcogenide FeSe exhibits various electronic states such as superconductivity, the so-called electronic nematicity, as well as a magnetic order under hydrostatic pressure. Therefore, this system attracts considerable research attention in an effort to understand the interplay between the different electronic states. In S-substituted thin films of FeSe$_{1-x}$S$_x$ in which positive...
Recent family of Kagome superconductors AV3Sb5 (A = Rb, K, Cs) offers a natural playground to study the interplay between different electronic states such as non-trivial chiral charge order (CO) and unconventional superconductivity [1-5]. This is because of its unique crystal structure that results in flat bands across the Brillouin zone, crossing of linear bands at K-corner, appearance of van...
Spontaneous rotational-symmetry breaking (RSB) in the amplitude of the superconducting gap is a necessary condition for “nematic” superconductivity. This was evidenced in the topological superconductor Cu$_x$Bi$_2$Se$_3$ where, despite the threefold symmetry of its lattice, a twofold symmetry of electronic properties emerged from nuclear magnetic resonance$^1$, transport$^2$, and...
The model describes the reaction of atom-like muonium with the host lattice at the end of the implantation trajectory. Reactions of the bare muon with the host or prompt formation of the final states are not covered by this model. Since these alternative processes are temperature independent, their maximum contribution can be estimated from the smallest value that occurs at any given...
The usual response of muonium to an external magnetic field is dominated by the hyperfine interaction, which causes the observed spectrum to show the transition frequencies between different muonium spin states. However, we have recently discovered an unconventional magnetic muonium state in 2H-MoTe$_2$ where the muonium acts a magnetic impurity, which polarizes the local electronic magnetic...
Hydrogen passivation of defects is commonly used to reduce defects in semiconductors such as GaAs, diamond, and Si. We recently found by experiment that atomic hydrogen is also very effective in significantly increasing a minority-carrier lifetime (> 10 μs) in BaSi2, one of the emerging materials for thin-film solar cell applications. This means that defects no longer act as recombination...
Photoexcited muon spin spectroscopy (photo-$\mu$SR) was used to measure excess charge carrier lifetimes in passivated silicon wafers. Optically generated excess carriers interact with muonium centres via carrier exchange interaction and induce relaxation in the $\mu$SR time spectrum. The photo-$\mu$SR technique utilises this additional relaxation rate as a measure of the excess carrier...
The study on the electronic state of muon as pseudo-hydrogen (represented by the elemental symbol Mu) by muon spin rotation has long been appreciated as one of the few methods to experimentally access the electronic state of dilute hydrogen (H) in semiconductors and dielectrics. Meanwhile, theoretical predictions on the electronic state of H in these materials by first-principles calculations...
Metal halide perovskites (MHPs) have attracted great attention in recent years due to their enormous potential for application in optoelectronic devices. However, the defects at surface/interfaces and grain boundaries of perovskite films, which impede the further enhancement of power conversion efficiency (PCE) and long-term stability of halide perovskite solar cells (PSCs), still need to be...
We demonstrate the most fundamental coherent control techniques by excitation of microwave spin transitions in muonium, namely driven Rabi oscillations and Ramsey fringes upon free evolution. Unprecedented performance is achieved by triggering microwave pulses by a single implanted muon, which enables coherent spin manipulation of individual muonium atoms.
As a first example, we suppress...
Using muon-spin rotation (μSR) [1] the magnetic fields of Fe3O4 have been previously investigated. The Verwey transition at Tv (~123 K) and a transition at Tw (~247 K) are observed. Using Maximum-Entropy (MaxEnt) μSR data of single-crystal Fe3O4 are analyzed with much improved precision. [2,3] We review earlier results [3] and report on our analysis of the temperature dependence of fields...
CeO2 is a material that has been widely used in industrial fields such as catalysts and sensors. It is believed that oxygen deficiencies and hydrogen at the deficient positions play an important role in these functions, but the details, including the electronic state, have not been clarified. It has been reported that muons implanted in CeO2 are bound to electrons and form muonium [S.F.J.Cox...
The Fe-based superconductors have been extensively investigated in view of the intimate interplay of the magnetic and superconducting phases developing therein. Here, we show an anomalous behaviour of the mixed phase in the family of superconducting compounds LaFeAsO$_{1-x}$F$_{x}$ as detected by transverse-field muon spin rotation. This technique is the best tool to probe both the flux line...
To support the continued growth of μSR, it is important to encourage prospective new users by minimizing any barriers to entry to the μSR community. As with any other scientific approach, one such barrier to entry can be the software tools necessary to extract useful information from the data. Although excellent software options for μSR currently exist, in our experience, students and other...
Cross-polarization techniques provide a rich playground which allows NMR practitioners a large variety of tools to extract detailed spin-hamiltonian parameters of inhomogeneous systems. Beta-detected NMR is almost an ideal arena, i.e. one spin-polarized 8Li residing in a local structure, for which to apply such multi-resonant pulse sequences.
As such, an adaptation of NMR's BRAIN-CP RF...
In the past years, in the framework of a successful collaboration between RIKEN-RAL and INFN, (CHNET-TANDEM collaboration) a series of experiments were carried out to optimize Muonic Atoms X-rays Spectroscopy as a non-invasive and non-destructive probe for quantitative elemental characterization of ancient metal artefacts of particular interest. We present the results on late Bronze-age...
One famous model for a two-dimensional magnetic system is the Shastry-Sutherland (SS) model, which considers an orthogonal dimer network of spin S = 1/2 [1]. The model predicts a dimer ground state for J/J’ < 0.5, and a 2D antiferromagnetic (AFM) phase with significant quantum fluctuations is expected for J/J’ > 1 [2]. However, the ground state of the intermediate region (0.5 < J/J’ < 1) has...
The study of thin-film and multi-layered structures with nanometer resolution is possible with low energy $\mu$SR (LE-$\mu$SR). The average stopping depth of the positive muons with implanted energies between 1 and 25 keV extends over a few nanometers and depends on the density of the probed material.
Modeling of the measured $\mu$SR parameters such as diamagnetic asymmetry and relaxation...
The first principle calculation involving muon needs to consider the effect of quantum fluctuations as well and it is still in a state of development. In order to verify the first principle calculation, the basic data for the collision cross section at low energy region corresponding to the binding energy of the muon and the target molecule is necessary. Especially the elastic scattering cross...
To obtain one time-differential $\mu$SR spectrum using a conventional technique, we must wait around $10^2$ minutes. In the majority of $\mu$SR experiments, the $\mu$SR spectrum is recorded as a function of temperature. Thus, such a long recording time ($t_{record}$) has not been a serious problem, because the lead time ($t_{read}$) for stabilizing temperature requires typically 10-20 min,...
Materials showing high photoresponsive electrical resistance have attracted considerable attention due to their photoelectronic applications.[1] Recently, we have reported that yttrium oxyhydride (YO$_x$H$_y$) epitaxial thin films exhibit a repeatable photo-induced insulator-to-metal transition by UV laser illumination and thermal relaxation.[2] The photo-induced metallization likely...
Tuning the energy of incoming muons in the low energy muons (LEM) spectrometer is done primarily by applying a high voltage (HV) on the sample plate to accelerate or decelerate the implanted muons. Therefore, any manipulation on the sample that requires the use of direct contacts to it becomes complicated. For example, in order to run a current through the sample or apply an electric field on...
After the first observation of magnetic skyrmion in 2009, the so-called skyrmionics research field is still rapidly evolving. To this day, intense research effort is still carrying on in understanding their intrinsic properties for the potential realization of future energy efficient nanodevices. Magnetic skyrmion in thin multilayer films are appealing because their emergence, stability, and...
Lithium-ion (Li-ion) batteries are commonly used as energy storage device for both mobile and stationary applications. Even though the Li-ion technology is clearly a huge success story for modern electrochemistry, lately, there has been serious concerns regarding several aspects, e.g., availability and price of lithium raw material [1]. Consequently, the industry is currently and actively...
As known (Landau, 1937), the equilibrium domain structure of the magnetic flux in type-I superconductors in the intermediate state is formed due to the competition between the energy contributions to the sample free energy arising from the superconducting/normal interfaces, on one side, and the contributions due to an inhomogeneous field distribution and the domains shape (FDDS) near the...
In the context of $\mu$SR studies on magnetic materials in the ordered state, often a strong initial depolarization is found in the zero field spectra. For transverse field measurements this is often referred to as a loss in asymmetry. In case of the low-energy muSR (LE-$\mu$SR) setup this needs a more detailed discussion since effects such as time-of-flight distribution decay, back...
In intermetallic Ce- and Yb-compounds, the hybridization between the 4$f$ and itinerant conduction electrons induces the magnetic instability and charge configurations, and the ground state properties of heavy fermion located in the vicinity of a magnetic quantum critical point (QCP) is one of important issue for strongly correlated electron systems. The cubic compound YbCo$_2$Zn$_{20}$ has...
Ruthenium dioxide RuO$_2$ is a well-known catalyst applied in various fields due to its high electrical conductivity and chemical stability. Although rutile RuO$_2$ has long been regarded as a Pauli paramagnetic metal, recent neutron diffraction experiments and resonant X-ray scattering have suggested the presence of an antiferromagnetic order ($T_\mathrm{N}>300~$K: Ru moment size...
Rhenium oxide compounds of the type AReO$_4$ where A is a first-row transition metal cation, exhibit interesting electronic properties. Among this family of compounds, MnReO$_4$ was the first of this kind, synthesized with a high-pressure technique at 25 kbar in 1970 [1]. It has a wolframite structure where both cations have partially filled d shells, and an anisotropic electrical...
We present muon spin spectroscopy ($\mu$SR) measurements on the antiferromagnetic Mott insulator NiS$_2$. This compound features two subsequent magnetic phase transitions around 38.9K and 29K associated with the opening of a Mott gap. From the the rotation dependence of transverse field $\mu$SR measurements (Fig. 1b) we confirm the magnetic space group 205.33 in the 38.9K to 29K phase, refined...
In Mott insulators, band electrons are localized due to strong electron-electron interactions. Although the s-electrons of alkali metals are very delocalized, by confining them in the periodic nanospace of zeolite crystals and making them moderately localized, such a strongly correlated electron system can be created.$^1$ In sodalite, $\beta$-cages with an inner diameter of 0.7 nm are arranged...
We present the results of a muon-spin relaxation ($\mu^{+}$SR) investigation of the crystalline organic radical compound 4-(2-benzimidazolyl)-1,2,3,5-dithiadiazolyl (HbimDTDA), in which we demonstrate the hysteretic magnetic switching of the system that takes place at $T = (249 \pm 13)\,\mathrm{K}$ caused by a structural phase transition. Muon-site analysis using electronic structure...
Although $\mu^+$SR is widely used as a tool for studying a microscopic internal magnetic field in condensed matters over 40 years, the counterpart technique, i.e., $\mu^-$SR is less common for such purpose mainly due to a low counting rate for reaching reliable statistics. However, the recent progress in the beam power and counting system overcame such problem. We therefore started a new...
In recent years, 5d transition metal oxides have been the focus of increasing research interest, owing to their rich physics emerging from the interplay between electron correlations and strong spin-orbit coupling (SOC). Such SOC-induced insulating phases are frequently accompanied by the transition of the 5d ion to a magnetic state triggered by local structural distortions, in competition...
We present a piezoelectric-driven uniaxial pressure cell operable at cryogenic temperatures and optimized for muon spin relaxation and neutron scattering experiments. These methods often require larger sample sizes, and so the cell is designed to generate a force of up to ~ 1000 N. It incorporates calibrated displacement and force sensors, the combined knowledge of which can determine quickly...
Artificial spin ices, which are composed of dipolar coupled arrays of elongated nanomagnets, host a broad range of physical phenomena usually the preserve of bulk condensed matter[1]. In particular, collective phase transitions between ordered and disordered states have been well documented in these nanomagnetic systems[2]. The complex phases observed in artificial spin ices occur as a...
The recent surge of Li-ion batteries has triggered an increased interest to investigate Na-ion battery materials [1,2], because Na is more abundant than Li, resulting in lower material costs. Although many Na transition metal oxides are available as a cathode material for the Na-ion battery, there is, at present, no suitable anode material [1]. The most common anode materials for the Li-ion...
Muon probing hydrogen study is based on the fact that the target material contains at least a small amount of hydrogen. Therefore, a high-sensitivity measurement of hydrogen abundance would be useful as a complementary measurement of $\mu$SR experiments. We are developing a high-sensitivity thermal desorption spectrometry (TDS) system to perform such complementary measurements.
TDS is known...
We report progress of which examines the thermal stability of the muon production target up to high temperature regime. We employed the high-frequency induction heating system as an indirect heater to target material, graphite, used with various purposes such as kitchenware, small blacksmiths. Prior to applying muon production target, we tested simple disc graphite with small chamber and RF...
For quantum systems/materials, a standard procedure for probing this behaviour is to try to tune these properties using external parameters to put the different phases of the material onto a phase diagram. Pressure application is a widely used tool to tune these properties, using a given pressure cell device. This can be a problem when using Muon Spin Rotation/Relaxation (µ+SR) as a large...
In calculations supporting μSR, it is important to deal with muon quantum effects. In previous studies, people have gone beyond the point-like muon approximation by using methods such as vibrational analysis of the zero point motion and path-integral molecular dynamics.[1-3] We now use a new method called Two-component DFT (TCDFT), which treats the muon as a fully quantized particle with its...
The event language is Italian
In this presentation I will give a short introduction into quasielastic neutron scattering (QENS) and its application to glass-forming systems. QENS operates on time scales from picoseconds to a microsecond and at the same time has a spatial resolution in the Ångström range. Therefore, it is well suited for the study of molecular and polymeric glass-formers.
The dynamics of glass-formers is...
Over the past decade, we have been using beta-detected NMR to examine the properties of amorphous materials. While this has typically focused on polymers,$^1$ we have recently been interested in ionic liquids (ILs). ILs are binary mixtures: they are composed of two oppositely charged molecular species. They are also liquid at room temperature. Their properties, determined by strong...
In the drive to replace fossil fuels with sustainable alternatives, achieving the reversible interconversion of protons and dihydrogen is a crucial target. The reaction can be carried out readily using platinum-based systems, but the cost and availability of this precious metal preclude scaling such approaches. In nature, the [FeFe]-hydrogenase enzymes have evolved to perform the very same...
Over the past four decades, muon spin rotation and relaxation technique in water and ice has been reported by several groups [1-4]. Most of the previous studies were focused on muonium chemistry (detection, its relaxation, reaction and frequencies) in water and ice. To deepen the understanding of muon behavior in water and application of $\mu$SR to life sciences and hydrated samples, we...
Layered transition-metal dichalcogenides (TMDs) are proposed as building blocks for van der Waals (vdW) heterostructures. Semiconducting TMDs are further prone to host magnetic impurities, e.g. at defects or interstitials. Here we investigate the behavior of interstitial $^8$Li$^+$ implanted into 2H-MoTe$_2$ at depths of $\sim$110 nm with $\beta$-detected NMR. We find that unlike muons...
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science [1-6], of which kagome magnets appear as a highly promising platform. Here, we explore magnetic correlations in the recently identified topological kagome system TbMn$_{6}$Sn$_{6}$ using $\mu$SR, combined with local field analysis and neutron diffraction [1,4]. Our studies identify an...
We report the surface muon beamline design of the Muon station for sciEnce, technoLOgy and inDustrY (MELODY) project based on China Spallation Neutron Source (CSNS). Based on the 1.6GeV proton beam, a surface muon beam line has been designed to deliver a muon flux of 10^5μ+/s to the μSR experiment area. In order to transport the large emittance muon beam, a series of solenoids for focusing...
The Phase II upgrade project of the China Spallation Neutron Source includes the construction of a surface μ beam line and a μSR spectrometer, which will be the first μSR spectrometer built in China. Here we report the conceptual design of the spectrometer including the sample environment. Based on the design parameters of the muon beam, we design the spectrometer with a large number of...
A Muon station for sciEnce, technoLOgy and inDustrY (MELODY) project will be constructed at China Spallation Neutron Source. The Phase I project will provide a surface muon beam with a pulse width of 100 ns at a rate over 10^5 µ+/pulse. Accurate monitoring of the muon beam intensity is essential for the calibration of the µSR spectrometer. The key of the beam intensity measurement is to...
A test of the abstract system
We present the results of muon spin relaxation ($\mu$SR) on the Ce-based quasikagome lattice CeRh$_{1-x}$Pd$_{x}$Sn ($x$ = 0.1 to 0.5). Our zero-field (ZF) $\mu$SR results reveal the absence of both static long-range magnetic order and spin freezing down to 0.05 K in the single crystal sample of $x = 0.1$. The weak temperature-dependent plateaus of the dynamic spin fluctuations below 0.2 K in...
The Muon station for sciEnce, technoLOgy and inDustrY (MELODY) is foreseen to be the first muon source in China and to be located at the China Spallation Neutron Source in Dongguan. The stand-alone target station has been studied for the surface muons and the pions production. In this report, we aim to describe the design of the target station, including the mechanical design, the radiation...