28 August 2022 to 2 September 2022
Science and Technology Campus, University of Parma
Europe/Rome timezone
The Open Access Conference Proceedings is Now Available!

Investigation of the magnetic topological insulator family (MnBi$_2$Te$_4$) (Bi$_2$Te$_3$)$_n$ by μSR and NMR

P-MON-21
29 Aug 2022, 17:20
1h 40m
Science and Technology Campus, University of Parma

Science and Technology Campus, University of Parma

University of Parma, Italy
Poster Strongly correlated electron systems Posters

Speaker

Manaswini Sahoo (IFW ,Dresden, Germany, Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Universit`a di Parma, Parco Area delle Scienze 7A, I-43100 Parma, Italy)

Description

[Fig. 1 ($MnBi_2Te_4$) ($Bi_2Te_3$)n Zero Field μSR asymmetries vs. time at different temperatures
Time-reversal symmetry breaking in a topological insulator (TI) opens a surface gap and distinguishes chiral quantum states that could eventually be exploited in electrically controlled spintronic devices. The new approach to this state in a TI is with the intrinsic magnetic proximity of a magnetic insulator that can be achieved with layered van der Waals materials.
($MnBi_2Te_4$) ($Bi_2Te_3$)n are one of the first such examples, where the increasing number n of TI layers controls the magnetic properties and dimensionality of the material. These compounds do display the quantum anomalous Hall effect, a hallmark of a magnetic TI, where spontaneous magnetization and spin-orbit coupling lead to a topologically non-trivial electronic structure. Magnetic order critical temperatures detected by macroscopic magnetization are $T_N$=25,13K for n=0,1 and $T_C$=12K for n=2 with a lower metamagnetic transition at $T_M$=6K for n=1[1,2,3].
Zero-field μSR (see Fig. 1) shows more than one internal field at the muon site with the majority one decreasing in value when n is increased. The muon spin precessions display very fast relaxations of static inhomogeneous nature, and the longitudinal asymmetry component displays critical slowing down of fluctuations at $T_C$. Remarkably the high field site disappears above $T_M$. NMR additionally shows the presence of a small anti-site component (likely Mn in the Bi site) in the n=1 sample. This local information is crucial to correctly interpret macroscopic magnetization data.

[1] M. M. Otrokov et. al, Nature 576, 416 (2019)
[2] Raphael C. Vidal et.al, Physical Review X 9, 041065 (2019)
[3] M. Z. Shi et.al, Physical Review B 100, 155144 (2019)

Primary author

Manaswini Sahoo (IFW ,Dresden, Germany, Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Universit`a di Parma, Parco Area delle Scienze 7A, I-43100 Parma, Italy)

Co-authors

Dr Anja U.B Wolter (Leibniz IFW Dresden, 01069 Dresden, Germany) Dr Annna Isaeva (Van der Waals-Zeeman Institute, University of Amsterdam) Prof. Bernd Büchner (Leibniz IFW Dresden, 01069 Dresden, Germany) Dr Evgueni V. Chulkov (DIPC, Donostia, Spain) Prof. Guiseppe Allodi (Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Universit`a di Parma, Parco Area delle Scienze 7A, I-43100 Parma, Italy) Dr Jonas A. Krieger (Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, CH-5232 Villigen PSI, Switzerland) Dr Laura T. Corredor (Leibniz IFW Dresden, 01069 Dresden, Germany) Dr M.M. Otrokov (DIPC, Donostia, Spain) Prof. Roberto De Renzi (Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Universit`a di Parma, Parco Area delle Scienze 7A, I-43100 Parma, Italy) Dr Zaher Salman (Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, CH-5232 Villigen PSI, Switzerland)

Presentation materials

There are no materials yet.