28 August 2022 to 2 September 2022
Science and Technology Campus, University of Parma
Europe/Rome timezone
The Open Access Conference Proceedings is Now Available!

Studying spin diffusion and quantum entanglement with LF-$\mu$SR

O-2
29 Aug 2022, 11:00
20m
Science and Technology Campus, University of Parma

Science and Technology Campus, University of Parma

University of Parma, Italy
Oral Spin liquids and related phenomena Oral contributions

Speaker

Dr Francis Pratt (STFC)

Description

LF-$\mu$SR studies of spin diffusion started with mobile solitons [1] and polarons [2] in conducting polymers. Spin 1/2 antiferromagnetic chains can also support diffusive spin excitations in a certain parameter range of the XXZ model [3], showing either diffusive [4] or ballistic transport [5]. Recent LF-$\mu$SR studies of layered triangular lattice quantum spin liquid materials such as 1T-TaS$_2$ [6] and YbZnGaO$_4$ [7] have shown spin dynamics that is extremely well described by a 2D spin diffusion model, fitting much better than previously proposed models for spin correlations. In YbZnGaO$_4$ the diffusion rate shows a clear crossover between classical and quantum regimes as $T$ falls below the exchange coupling $J$. That the spin diffusion approach works well in the high $T$ classical region might be expected, but it is found that it also works equally well in the low $T$ quantum region. This allows a $T$ dependent length scale to be derived from the data that can be assigned to a quantum entanglement length $\xi$. Another entanglement measure, the Quantum Fisher Information $F_Q$ [8] can also be obtained from the LF-$\mu$SR data and compared with $\xi$.

[1] K. Nagamine et al, Phys. Rev. Lett. 53, 1763 (1984); [2] F.L. Pratt et al, Phys. Rev. Lett. 79, 2855 (1997); F.L. Pratt et al, Physica B 326, 34 (2003); [3] B. Bertini et al, Rev. Mod. Phys. 93, 025003 (2021); [4] F.L. Pratt et al, Phys. Rev. Lett. 96, 247203 (2006); F. Xiao et al, Phys. Rev. B 91, 144417 (2015); [5] T. Lancaster et al, Phys. Rev. B 85, 184404 (2012); B.M. Huddart et al, Phys. Rev. B 103, L060405 (2021); [6] S. Manas-Valero et al, npj Quantum Mater. 6, 69 (2021); [7] F.L. Pratt et al, Phys. Rev. B 106, L060401 (2022); [8] P. Hauke et al, Nat. Phys. 12, 778 (2016).

Primary author

Dr Francis Pratt (STFC)

Co-authors

Benjamin Huddart (Durham University) Tom Lancaster (Durham University) Samuel Manas-Valero (University of Valencia) Eugenio Coronado (University of Valencia) Franz Lang (STFC) Stephen Blundell (University of Oxford) Sara Haravifard (Duke University) William Steinhardt (Duke University)

Presentation materials

There are no materials yet.