The QTNM collaboration: a project for absolute neutrino mass measurement

by Dr Seb Jones (UCL)


The observation of neutrino oscillations provides proof of non-zero neutrino masses, something which was not predicted in the minimal Standard Model. However, these same neutrino oscillation experiments do not provide information on the absolute scale of the neutrino masses, which remain unknown. The neutrino masses are most directly accessed through those experiments which measure the shape of the beta-decay energy spectrum. In particular, a technique known as Cyclotron Radiation Emission Spectroscopy (CRES) offers the opportunity to measure neutrino masses lower than the current upper mass limit of 0.8 eV/c^2 achieved by the KATRIN collaboration. The Quantum Technologies for Neutrino Mass (QTNM) collaboration aims to utilise CRES, along with recent breakthroughs in quantum technologies, to build a demonstrator apparatus for measuring the neutrino mass. It is hoped that this demonstrator will make significant contributions towards an experiment with a neutrino mass sensitivity of O(10 meV). I will present an overview of the principles of neutrino mass measurement as well as the QTNM collaboration.