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The neutrino
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Neutrino oscillations

arXiv:hep-ph/0411274

m Evidence from atmospheric, solar, 3 iﬁu_ L
reactor and accelerator neutrinos all £ o) E
confirms the existence of neutrino e
oscillations 5 S 1

m 2015 Nobel Prize awarded to Takaaki ize: ,,,,,, . ”‘:
Kajita & Arthur B. Macdonald “for the w0 :
discovery of neutrino oscillations, 0 3
which shows that neutrinos have iZj """"""""""""""" 1
mass’ o0 | &

m Oscillations arise from mixing between o S e I """" 1
flavour and mass eigenstates of 12 of v
neutrinos SN S

m Neutrino mass scale very different 105— N -
from other fermions Yooa oz s 4
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Neutrino oscillations and neutrino mixing

m Mixing between flavour and mass eigenstates given by

lvi) = Z Uai [va)

where
Ue1 Ue2 Ue3
U=|Us U2 Us
U7'1 U7'2 U7'3

is a unitary matrix

m Oscillations controlled by the matrix U and the squared differences

between the mass eigenstates, Am? = m? — m?

m These Am§ control the length/energy scale at which oscillations
occur
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Neutrino mass hierarchy

e — ()" (m,) e———
(am’),,
(ml)z——
m Differences between m,.2 known
e Y from oscillations
" O, m Ordering of mass eigenstates
Ve currently unknown
m Lightest mass eigenstate is
2 . .
T () either my (normal hierarchy) or
'sol . .
——(m,)’ () o — ms (inverted hierarchy)
normal hierarchy inverted hierarchy

arXiv:1310.4340
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Possible neutrino masses

Normal hierarchy Inverted hierarchy
T —1 S —1
> 107 >107 A
L, £ 2, = 3
£ = £ L i
L /// L 1
02— — 1072 = e
L —_m ] L —_—m ]
L —_m L —— m ]
L ms L —_—m 1
I I
107 1072 10" 1078 1072 10"
Meast [6V/c? Miast [€V/¢?]

m It is possible the lightest mass eigenstate (either my or ms) may in
fact be massless

m Masses of the other eigenstates are then constrained by the mass
splittings
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Why measure the neutrino mass?
h

Why measure the neutrino mass?

m One of the most abundant particles in the universe — and we don’t
know its mass!

m Very different mass scale suggests different mass generation
mechanism (compared to just Higgs)
m Connected to various other areas of physics:

m Lepton number violation
m Cosmology
m Sterile neutrinos
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Why measure the neutrino mass?
h

Measuring the neutrino mass

Cosmological Neutrinoless double  Direct measurement
measurements ([-decay of S-decay
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Why measure the neutrino mass?
h

Measuring the neutrino mass

Cosmological Neutrinoless double  Direct measurement
measurements ([-decay of S-decay

13

sl\\
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- Bos
b os|-
: o4
Tl /
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02 =
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ol o N e
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\ Elcton-energy € (V] E-EgleV]

X = z,: i Mgg = Z (Usi)? m;

]

Y <0.111 eVc2 |mgs| <

arXiv:2007.08991 [astro-ph.CO] 0.036 — 0.156 eVc 2
(2021) arXiv:2203.02139 [hep-ex] (2022)

ms < 0.8 eVe2
Nat. Phys. 18, 160-166 (2022)
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Why measure the neutrino mass?

The first two have their issues

Relies on cosmological models
Only works if neutrinos are
Majorana particles
m Neither of these are model-independent measurements in the same
way that direct measurement is
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Direct measurement of mg

Measurements of 5-decay

2X =5 X +e 47
m For 5-decay the total energy of the initial state is well known and the

kinematics of the final state can be precisely measured

m Can use energy and momentum conservation to constrain the
neutrino mass

m Processes such as this often referred to as ‘direct measurement’
m Isotope commonly used is tritium
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Direct measurement of mg

Direct measurement

Z. Phys. 88, 161 (1934)

m An old idea — Fermi suggested the shape of the S-ray spectrum
could be used to determine the neutrino mass in 1934, as did Perrin
separately in 1933
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Direct measurement of mg

Tritium [S-decay spectrum

ar 1/2
£ ~ 80 (E)— E) [(E0 - mg] O (Ey — E — mp)

10 21 :

T T T 7 45

3
— mg=0meV ] 40 \ — mg =0meV
25 mg=50meV ®
» my =500meV 3 % ms = 50 meV

mg = 1000meV  §

3 decay rate dT /dE [s~'eV~"]
 decay rate df /dE [s~"eV™"]

5 R R

o bbbl bbbl

1.5 20
1 E 15
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0.5 3
] 5
0 L L ! J 0 L . N
-16 -14 12 -1 -08 -06 -04 -02 0 0.2 -0.15 -0.1 -0.05
Electron energy E — Eq [eV] Electron energy E — Eq [eV]

m Information about mg is encoded in last eV of energy spectrum
(endpoint energy, Eq =~ 18.6 keV)
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Direct measurement of mg

Limits on mg

g —— Normal hierarchy
%10 ! -
£ Inverted hierarchy ]
102 E E
10-° 1072 meas\1fev/cz]
m Mass splittings from oscillation experiments provide a lower limit on

Mg
m For normal hierarchy mg 2 9 meV
m For inverted hierarchy mg 2 50 meV
m An experiment with a sensitivity below mg ~ 50 meV will determine
the mass hierarchy (if still unknown)
m A sensitivity of 9meV gives us a guaranteed discovery
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Direct

W

measurement of mg

hat can measuring mg tell us?

Y o £ 2
1 2225] b r 7
E 22220 =
E LYYV YE > L 4
F I Y Y Y o,
= Py YYYyad B W L = Normal ordering 4
L 2220005 ]
i .
1071 £ oy el 1 i —— Inverted ordering —
E > 3 E E
1072 = 3 r 1
1 ot y eBOSS (2021)
o Ll i M Y /‘ M ] E|
1072 10" 1072 107" 1
mg tev/cz] my [eV/c?]

m Results can augment those from Ov35 experiments and cosmology
m Red here is IH, blue is NH
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Direct measurement of mg

MAC-E filter — Current state of the art

JINST 11 P04011 (2016)

Nair coils”™

“electrodes—>

solenoid, solenoids
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L _——
source detector
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U=0v g = U=0v Uy

iy
~
Unnax ! Binin
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£ - - . z x A A A
LN 7
¢ electron momentum (without electric field) N < °B

m Magnetic Adiabatic Collimation — Electrostatic
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Direct measurement of mg

MAC-E filter — Current state of the art

JINST 11 P04011 (2016) = = = = = = ® -

" s = o= omon
Nair coils”™

= “electrodes—>

solenoids

solenoid,
= = -
S -
source N detector
B X Brax  Bp
U=0v N U=0v Uy
o O
~o
z 'Umax:Bmm
. " = s = = =l = o= o= o=om -
A A x _» > x A L £

—— =
electron momentum (without electricfield) ~ < ¢ ¢ ¢ B

m Magnetic Adiabatic Collimation — Electrostatic

m Electrons emitted in source region with high magnetic field, Bs, and
travel adiabatically along field lines to analysing region with much
lower field, Bmin
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Direct measurement of mg

MAC-E filter — Current state of the art

JINST 11 P04011 (2016) = = = = = = ® -

" s = o= omon
Nair coils”™

= “electrodes—>

solenoids

solenoid,

== = WTre

== -
source detector
BS Bmax BD
u=ov S u=0ov U,

“Unnax! Brin
. = = s 8= = mls 8= 8= 8 =8 ow
A A x _» > x A L £

—— =
electron momentum (without electricfield) ~ < ¢ ¢ ¢ B

m Magnetic Adiabatic Collimation — Electrostatic

m Retarding potential at central analysing plane prevents electrons
without sufficient energy from passing
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Direct measurement of mg

MAC-E filter — Current state of the art

JINST 11 P04011 (2016)
& solenoids
— o

" s = o= omon
Nair coils”™

= “electrodes—>xy

solenoid,

= ==

S -
source RN detector
B X Brax  Bp
U=0v N U=0v Uy

o O
~o
“Unnax! Brin
. = = s = = mls 8= = 8 = om
A A x _» > x A L £
7 ¢

—— =
electron momentum (without electricfield) ~ < ¢ ¢ ¢ B

m Magnetic Adiabatic Collimation — Electrostatic

m Those electrons with sufficient energy to pass the potential barrier
are re-accelerated and detected
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Direct measurement of mg

MAC-E filter — Current state of the art

Nat. Phys. 18, 160-166 (2022)

+ Spectrum for KNM1 data with
10 error bars (x50)

Spectrum for KNM2 data with
10 error bars (x50)

Count rate (cps)

Vo 'y &
T T T

0 50 100
Retarding energy (18,574 eV)

—

m Repeat this for different retarding potentials in order to generate
spectrum
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Direct measurement of mg

KATRIN experiment

- Analysing plane
Electrostatic high-pass filter . Electron
fana(1) o,
& “HeT*
© Radon atom

© Rydberg atom

i

i R
pAR

Transport and
pumping
electron gun

Pitch angle /
p/” ol
ion

6,.=25T motion Nat. Phys. 18, 160-166 (2022)

m Current best limits on mg are produced by the KATRIN experiment
-mgz <0.8eV/c?
m Expected final sensitivity of 0.2 eV/c?

m 70 m long beamline, spectrometer is 9.8 m in diameter and 23.3m
in length held at pressure of 10~'" mbar
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Direct measurement of mg

Limitations of MAC-E filters

m To increase statistical power, can increase source size

m However, source thickness is limited by on < 1 to avoid collisional
losses

m For a MAC-E filter:

AE _ Buna
E B BSI’C

2
_ ( RSI’C )
Rana
m Therefore, increasing Rgrc requires a corresponding increase in the
spectrometer size
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Direct measurement of mg

Limitations of MAC-E filters
m Impractical to scale KATRIN up

m We require a different technique for mz < 0.2 eV/c?
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CRES
.

CRES overview

m Cyclotron Radiation Emission

Spectroscopy ! eB

" 27 M + En/ 2
m Concept pioneered by Project 8 ™ Me + Eiin/

collaboration? B
m (-decay electrons immersed in B-field e
emit EM radiation — frequency Rem A
depends only on electron energy and Sk
B-field strength
B Ei = Qg =186keV,B=1T I ——

m f=27GHz, A ~ 1cm, MW radiation
m Radiation collected with antenna,

waveguide or resonant cavity _ I
#Monreal, B.; Formaggio, J. A. Phys. Rev. D e
2009, 80. —_
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CRES
.

CRES advantages

m Frequency measurements can reach precision of Af/f ~ 107°

A. L. Schawlow
“Never measure anything but
frequency”
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CRES
.

CRES advantages

m Frequency measurements can reach precision of Af/f ~ 107°
m No losses while transporting e~ from the source to the detector

Unlike MAC-E filters, no need to transport electrons from source to
detector — fewer electrons lost to scattering

; Analysing pane
Electiostatc high-pass fter Election
Ul = o

zaxis
Fiidine drecion
g-25T moton Nat. Phys. 18, 160-166 (2022)
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CRES
.

CRES advantages

m Frequency measurements can reach precision of Af/f ~ 1076
m No losses while transporting e~ from the source to the detector
m The source (tritium gas) is transparent to MW radiation
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CRES
.

CRES advantages

Frequency measurements can reach precision of Af/f ~ 1078
No losses while transporting e~ from the source to the detector
The source (tritium gas) is transparent to MW radiation

Differential spectrum measurements

m MAC-E filters are ‘integral filters’ — intensity above a point in the
spectrum is counted

m Extra time required for measuring background, spectrum intensity,
endpoint energy

m Differential spectrometers do not have this issue
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CRES
.

CRES challenges

m Radiated powers are very small

2me?f2 B2sin? 0
3egc 1 —-52

Radiated power =~

where fy = - €8 — 27.9925GHz for B=1T

2T me

P=117fWforB=1Tandf =1

Pe
0
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CRES
.

CRES challenges

m Radiated powers are very small

m Atomic tritium source required
arXiv:2102.00594 [nucl-ex]
10 T T T T T T

Atomic T

©

m Molecular tritium has rotational T2
and vibrational excitations that

broaden the endpoint peak

m Production and preservation of
atomic tritium is a key
challenge for any future
experiment

o
T
1

Relative probability
EN
T
|

~N
T
1

ol L L L L
6 -4 -2 0 2

-8 - -
Relative Extrapolated Endpoint (eV)

S. Jones (UCL) RAL seminar November 15, 2023 30/53



CRES
.

CRES challenges

m Radiated powers are very small
m Atomic tritium source required
m Need to trap and observe ~ 102° tritium atoms for ~ year

><1‘0 21 :

— mg = 1000 meV
m Last eV of the spectrum

contains 2.9 x 1013 of the
events 1

— mg=0meV

Decay rate [s~'eV™']

m Necessitates an intense source 05
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Project 8

m Phase Il with molecular
tritum ina ~ 1T field

: R m Detected 3742 events
over 82 days
= ) 175 [ o]+ U

Time(my P Rew Lett 114162501 2015) L1 ~1500
3 -200%
O 75
H i ritium data T T
m Above: CRES signal from o] e s
30keV 33™Kr deca B :
. y 1 e enen
electrons in Phase |

16500 17000 17500 18000 18500 19000 19500
Reconstructed kinetic energy (eV)

Ashtari Esfahani et al. arXiv:2303.12055 [nuc-ex]
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QTNM
.

QTNM collaboration
NPLE ETS:

National Physical Laborator:

5 ENIR]/I%{EIIB{(C;)E w R Sm‘ézfsi‘;
v CA IT ’
WARWICK @/ JRUEHH () ORD

HE UNIVER

Quantum Technologies for Neutrino Mass Collaboration

m Proposal goal: build a demonstrator apparatus for determining
neutrino mass via CRES from tritium 5-decay — CRESDA

m This entails:

m Demonstration of confinement of atoms with densities of
10'> — 10"%cm~2, scalable to ultimate exposure of ~ 10%° T atoms

m Magnetic field mapping with < 1 uT absolute precision and ~ 1 mm
spatial resolution

m Observation of CRES electrons (non-tritium source), potentially with
quantum noise limited MW detection systems

m Experiment to be built at University College London
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QTNM
.

Potential project pathway

58 UNIVERSITY OF w ﬁm@;‘?s?f;
¥ CAMBRIDGE \ s yicic B e

National Physical Laborat

Quantum Technologies for Neutrino Mass Collaboration

m Basic technology demonstration at §' CC I
ENT
N E R

UCL (2021-2025) CuLbpamc
m Tritium demonstrations at Culham
(2025-2030+)
m Final neutrino mass experiment with
~ 10 — 50meV sensitivity at Culham
or similar facility (2030—-2040)

404

RE
GY

5 g Y
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CRESDA outline

H/D/T atom supersonic beam
discharge source (30 K)

Magnetic o
state selector Injection

region

180° permanent magnet
hexapole guide
CRES region (66 Halbach arrays)

m Consists of source, atomic trapping storage ring and instrumented
CRES region
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Atomic source
m When measuring the endpoint of atomic tritium any molecular
tritium contamination acts as a background

m Cryogenic (30K) pulsed
supersonic source

m H»/Do/T» dissociation using DC
discharge seeded with electron

Beam )
characterisation from tungsten filament

Skimmer
Filament

A

Pulsed valve

Anode
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QTNM
ot

Storage ring

emmmEEEEEy

o
oot
o

=

4
m Need to confine neutral atoms and prevent them forming molecules
on surfaces
m Advantages of storage ring design include:
m Lower atomic losses than occur when loading a trap (no deceleration
and cooling required)
m Separates magnetic field requirements for optimal high-frequency
resolution CRES from magnetic trapping
m Scalability (see next slide...)
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QTNM
.

Scalability of storage ring concept

H/D atom
beam source

Source
characterisation

State selector

characterisation '

CRES region

m One option: multiple CRES modules connected by single storage
ring
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QTNM
.

Electron trapping

_ 1 eB _eB(Eq o B gy
- 2nme+ Ex/c® 21 2 dEiot 2 o
= 51kHzeV™!

forB=1T, Ex = 18.6keV
o for AE = 1eV, we require Af ~ 50kHz

1
fobs ~ IN; " fobs = 20 s

An endpoint electron travelling at 89° to B-field will travel Pe
275 m parallel to B-field in this time
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QTNM
.

Electron trapping

Bmax

. AB
AB 0 > sin ! 1-—
Einax
Phys. Rev. C 99, 055501 (2019)

m Solution: Trap [-decay electrons in a ‘no-work’ trap where they can
be continuously observed for 10s or 100s of s

m Local minimum in magnitude of background B-field
m Require trapping field of order 1 mT against 1 T background

m Trap design has large effect on range of observed frequencies — key
to understand this
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QTNM
.

Importance of electron trap design

6
_ 100 ey
N E * =
= 0E ¢ Bug=10T,AB=101mT
4 g B . Bokg = 0.9T, AB=9.1mT =
70 ; . . Bykg = 0.8T, AB=8.1mT é
S . Bokg = 0.7T, AB=7.1mT E| p
0E .. «  Byg=06T.AB=6imT e
50, o e ©  Byg=05T,AB=51mT e
E .. E
40 £ PP E
0k R E|
E o« ® L. E
20 ERIEIE N 3 B
E s i El
10 & ¢ i -
E HmH‘\HH\HH\"""\l‘.”’
84 85 86 87 88 89 90

0 [degrees]
m Electrons with pitch angle, 8 < 90° experience different average
B-field as a result of motion in trap
m Deeper magnetic traps contain more electrons but these will radiate
at different frequencies (for the same energy)
m Other features of the signal must be used to get best energy
resolution
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QTNM
.

Simulation & analysis

m Work ongoing to optimise
trap and RF collection
design

258

257.5

m Can simulate an (idealised)
decay electron signal in a
variety of traps using
custom software

257

Power [A. U]

256.5

Downmixed frequency [MHz]

255.5

255

m Simulation includes
electron propagation, RF Y T
collection and basic model e
of signal processing
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QTNM
.

Simulation & analysis

258

m Many interesting CRES
signal features that can be
used to constrain electron

257.5

257

Power [A. U]

256.5

Downmixed frequency [MHz]

energies 256
m Chirp rate of our signal tells 255
us about the rate of energy 2%
loss ke } 04 06 08 1
Time [ms]
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QTNM
.

Simulation & analysis

m Many interesting CRES
signal features that can be

. 340 | =
used to constrain electron

%l 107,
energies g 10°g
. ) El 10°8
m Chirp rate of our signal tells £ 10°
us about the rate of energy 2 10°
< 10
loss H 107
. -8
m Sidebands caused by AM o
and FM of signal — tell us 6 0. ) . 11 12
. . Time [ms]
about axial motion of
electron
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QTNM
.

Simulation & analysis

m Many interesting CRES
signal features that can be
used to constrain electron
energies

»
o

285 T

280 [

w W »~
o
Power [A. U]

275

m Chirp rate of our signal tells
us about the rate of energy
loss g

260 — 1

m Sidebands caused by AM g 05
and FM of signal —tell us 0 012 0‘.4 0.‘6 o.‘a T1"me [ms}.z
about axial motion of

electron , _ _
m Discrete jumps in frequency caused by scattering from residual gas

— need to fully understand frequency of these scatters in order to
reconstruct original frequency

270 25

Downmixed frequency [MHz]

265
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QTNM
.

CRES Magnet Assembly (CMA)

Dilution Fridge

50-100 mK

Q-amp

Source of (10-20

keV electrons to :3 {
simulate Tritium B- {
decay

| magnet bore I- R

\ 2

T~aK Flange /' g

2 3 2

£

Not to scale CMA (Cresda Magnet Assembly) MW Receiver “\g

m Aim to detect CRES at cryogenic temperatures (minimise noise)

m Exploring use of quantum-limited amplifiers to overcome small
signal power

m Possible electron source to calibrate energy
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QTNM
.

Quantum-limited microwave amplifiers

m CRES signal is very weak (~ 1fW)

m State-of-the-art HEMT amplifiers have noise temperatures of about
7K

m We require quantum-limited amplifiers:

m Superconducting Low-Inductance Undulatory Galvanometer (SLUG)
m Superconducting parametric amplifiers
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QTNM
.

SLUG amplifiers

Signal Frequency (GHz)

m Superconducting Low-inductance Undulatory Galvanometer

m Non-parametric low-noise cryogenic amplifier under development at
NPL

m Nb nanobridge junctions fabricated (above left) to allow operation at
high frequencies

m Numerical simulations and experiments ongoing to characterise
and tune SLUGs for our use
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QTNM
.

Superconducting parameteric amplifiers

30

~1cm -0t " R
10° 107 10° 10
4, (GHz)

m Members at Cambridge Quantum Sensors group have designed,
fabricated and tested high-gain parametric amplifiers based on
superconducting resonators

m Superconducting NbN optimised as amplifier material

m Right: Power gain vs frequency — high gains with a bandwidth of
several MHz. Distribution is two-sided about central RF frequency

m Noise measurement of amplifiers ongoing and making good
progress

2
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QTNM
.

Magnetometry

m Measuring electron energy with P
resolution of 10~° requires that B-field - u
be known to similar level

m Deuterium or tritium atoms can be
used as quantum sensors for B-field

Magnetic
preparation lenses

mapping to better than 1 uT 100, —
2 4 Expt
m Circular Rydberg states prepared in 507
beam and passed through CRES 3 0%
volume 2 02
m Pulses of MW radiation drive L0
Rydberg-Rydberg transitions — ;Eggwwﬁuww
sensitive to B-field R 0 5 10

Frequency - 38511 (MHz)
m Potential spatial resolution of 1 mm
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QTNM
.

Magnetometry

— MCP detector

UV&IR
5 « Lasers

Helmholtz coils
Electrostatic
filter

Microwave
antenna ™~

Skimmer~_

m Current results:

m Absolute field precision of 2 uT, relative . TL
+900nT O ™
m Spatial resolution of 0.87 mm R SSI: P,
m Electrometry precision of 85uVem~! | E2 o bt
m Paper detailing method and results published Es an&ﬁ
this year? . R RIS
T e ——I579
aZou, J.; Hogan, S. D. Phys. Rev. A 2023, 107. €,
g%‘ |56¢) -
ﬁ 30 o 1565)
Z‘:_g"’g}—f—\sm -

55.53.453)
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Conclusion

Summary

m The neutrino mass scale remains unknown but the answer has the
potential to provide key constraints in several areas

m Current measurement techniques (MAC-E filters) are at their limits
and cannot take us to an experiment with guaranteed discovery
potential

m CRES is a recent technique that allows the measurement of
electron energy at unprecedented precision

m The QTNM collaboration is building on unique quantum techniques
to demonstrate the viability of a CRES experiment

m Provides the exciting possibility of having the ultimate neutrino
mass experiment in the UK
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Thanks for listening!
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Backup

Are calorimetric techniques the solution?

m Can embed isotopes in

microcalorimeters — decay via electron .electlr.o-kthgrmal
capture n

m Calorimeter measures the atomic thermometer
- . AT— AV
de-excitation energy (minus the
neutrino’s enerQY) particle absorber
m '%Ho used by ECHo and HOLMES Eoal
collabs.

m In order to get required energy resolution for a high enough activity
may require thousands or 100s of thousands of microcalorimeters
operated at mK level
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