

# The QTNM collaboration: a project for neutrino mass measurement

#### Seb Jones (on behalf of the QTNM collaboration)

Department of Physics & Astronomy University College London

November 15, 2023





#### The neutrino

- Existence first postulated by Pauli in 1930 to explain shape of β decay spectrum
- Directly detected by Cowan & Reines in 1956
- Three flavours discovered: ν<sub>e</sub>, ν<sub>μ</sub>, ν<sub>τ</sub>. All appeared to be massless.





# Neutrino oscillations

- Evidence from atmospheric, solar, reactor and accelerator neutrinos all confirms the existence of neutrino oscillations
- 2015 Nobel Prize awarded to Takaaki Kajita & Arthur B. Macdonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"
- Oscillations arise from mixing between flavour and mass eigenstates of neutrinos
- Neutrino mass scale very different from other fermions



S. Jones (UCL)



# Neutrino oscillations and neutrino mixing

Mixing between flavour and mass eigenstates given by

$$|\nu_i\rangle = \sum_i U_{\alpha i} |\nu_{\alpha}\rangle$$

where

$$U = egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{pmatrix}$$

is a unitary matrix

- Oscillations controlled by the matrix *U* and the squared differences between the mass eigenstates,  $\Delta m_{ii}^2 = m_i^2 m_i^2$
- These △m<sup>2</sup><sub>ij</sub> control the length/energy scale at which oscillations occur



## Neutrino mass hierarchy



- Differences between m<sup>2</sup><sub>i</sub> known from oscillations
- Ordering of mass eigenstates currently unknown
- Lightest mass eigenstate is either m<sub>1</sub> (normal hierarchy) or m<sub>3</sub> (inverted hierarchy)



#### Possible neutrino masses



- It is possible the lightest mass eigenstate (either m<sub>1</sub> or m<sub>3</sub>) may in fact be massless
- Masses of the other eigenstates are then constrained by the mass splittings



## Why measure the neutrino mass?

- One of the most abundant particles in the universe and we don't know its mass!
- Very different mass scale suggests different mass generation mechanism (compared to just Higgs)
- Connected to various other areas of physics:
  - Lepton number violation
  - Cosmology
  - Sterile neutrinos



# Measuring the neutrino mass

Cosmological measurements



**Neutrinoless double** 

#### Direct measurement of β-decay





#### Measuring the neutrino mass Cosmological Neutrinoless double

Cosmological measurements





#### Direct measurement of β-decay



$$\Sigma = \sum_{i} m_{i}$$

$$m_{etaeta} = \sum_i (U_{ei})^2 m_i$$
  
 $|m_{etaeta}| < 0.036 - 0.156 \text{ eV}c^{-2}$ 

arXiv:2203.02139 [hep-ex] (2022)

 $m_eta = \sqrt{\sum_i |U_{ei}|^2 m_i^2}$ 

 $m_eta < 0.8 \ {
m eVc}^{-2}$  Nat. Phys. 18, 160-166 (2022)



#### The first two have their issues



Relies on cosmological models

 $n \longrightarrow \nu$   $w \longrightarrow \nu$   $n \longrightarrow \nu$   $w \longrightarrow \nu$  $e^-$ 

Only works if neutrinos are Majorana particles

Neither of these are model-independent measurements in the same way that direct measurement is



## Measurements of $\beta$ -decay

$$A_Z X 
ightarrow^A_{Z+1} X' + e^- + ar{
u}_e$$

- For β-decay the total energy of the initial state is well known and the kinematics of the final state can be precisely measured
- Can use energy and momentum conservation to constrain the neutrino mass
- Processes such as this often referred to as 'direct measurement'
- Isotope commonly used is tritium





#### Direct measurement



An old idea – Fermi suggested the shape of the β-ray spectrum could be used to determine the neutrino mass in 1934, as did Perrin separately in 1933



#### Tritium $\beta$ -decay spectrum

$$\frac{d\Gamma}{dE}\approx 3r_0\left(E_0-E\right)\left[\left(E_0-E\right)^2-m_\beta^2\right]^{1/2}\Theta\left(E_0-E-m_\beta\right)$$



Information about m<sub>β</sub> is encoded in last eV of energy spectrum (endpoint energy, E<sub>0</sub> ≈ 18.6 keV)



# Limits on $m_{\beta}$



- Mass splittings from oscillation experiments provide a lower limit on m<sub>β</sub>
  - For normal hierarchy  $m_{eta}\gtrsim$  9 meV
  - For inverted hierarchy  $m_{eta} \gtrsim 50 \,\mathrm{meV}$
- An experiment with a sensitivity below m<sub>β</sub> ≈ 50 meV will determine the mass hierarchy (if still unknown)
- A sensitivity of 9 meV gives us a guaranteed discovery

S. Jones (UCL)

RAL seminar



# What can measuring $m_{\beta}$ tell us?



- Results can augment those from  $0\nu\beta\beta$  experiments and cosmology
- Red here is IH, blue is NH





#### Magnetic Adiabatic Collimation – Electrostatic





- Magnetic Adiabatic Collimation Electrostatic
- Electrons emitted in source region with high magnetic field, B<sub>S</sub>, and travel adiabatically along field lines to analysing region with much lower field, B<sub>min</sub>





- Magnetic Adiabatic Collimation Electrostatic
- Retarding potential at central analysing plane prevents electrons without sufficient energy from passing





- Magnetic Adiabatic Collimation Electrostatic
- Those electrons with sufficient energy to pass the potential barrier are re-accelerated and detected





 Repeat this for different retarding potentials in order to generate spectrum



# **KATRIN** experiment



- Current best limits on  $m_\beta$  are produced by the KATRIN experiment
  - $-m_{eta} < 0.8 \ {
    m eV}/c^2$
- Expected final sensitivity of 0.2 eV/c<sup>2</sup>
- 70 m long beamline, spectrometer is 9.8 m in diameter and 23.3 m in length held at pressure of 10<sup>-11</sup> mbar

S. Jones (UCL)



# Limitations of MAC-E filters

- To increase statistical power, can increase source size
- However, source thickness is limited by σn ≤ 1 to avoid collisional losses
- For a MAC-E filter:

$$egin{aligned} &\Delta E \ \overline{E} &= rac{B_{ extsf{ana}}}{B_{ extsf{src}}} \ &= \left(rac{R_{ extsf{src}}}{R_{ extsf{ana}}}
ight)^2 \end{aligned}$$

Therefore, increasing R<sub>src</sub> requires a corresponding increase in the spectrometer size



# Limitations of MAC-E filters

#### Impractical to scale KATRIN up



• We require a different technique for  $m_{\beta} < 0.2 \text{ eV}/c^2$ 



# **CRES** overview

- Cyclotron Radiation Emission Spectroscopy
- Concept pioneered by Project 8 collaboration<sup>a</sup>
- β-decay electrons immersed in B-field emit EM radiation – frequency depends only on electron energy and B-field strength
- $E_{\text{kin}} = Q_{\beta} = 18.6 \,\text{keV}, B = 1 \,\text{T}$
- f = 27 GHz,  $\lambda \sim$  1 cm, MW radiation
- Radiation collected with antenna, waveguide or resonant cavity

<sup>a</sup>Monreal, B.; Formaggio, J. A. *Phys. Rev. D* **2009**. *80*.





#### Frequency measurements can reach precision of $\Delta f/f \sim 10^{-6}$



A. L. Schawlow "Never measure anything but frequency"



- Frequency measurements can reach precision of  $\Delta f/f \sim 10^{-6}$
- No losses while transporting *e*<sup>-</sup> from the source to the detector

Unlike MAC-E filters, no need to transport electrons from source to detector – fewer electrons lost to scattering



S. Jones (UCL)



- Frequency measurements can reach precision of  $\Delta f/f \sim 10^{-6}$
- No losses while transporting *e*<sup>-</sup> from the source to the detector
- The source (tritium gas) is transparent to MW radiation



- Frequency measurements can reach precision of  $\Delta f/f \sim 10^{-6}$
- No losses while transporting *e*<sup>-</sup> from the source to the detector
- The source (tritium gas) is transparent to MW radiation
- Differential spectrum measurements
- MAC-E filters are 'integral filters' intensity above a point in the spectrum is counted
- Extra time required for measuring background, spectrum intensity, endpoint energy
- Differential spectrometers do not have this issue



# **CRES** challenges

Radiated powers are very small

Radiated power 
$$\approx \frac{2\pi e^2 f_0^2}{3\epsilon_0 c} \frac{\beta^2 \sin^2 \theta}{1-\beta^2}$$

where  $\mathit{f}_{0}=\frac{1}{2\pi}\frac{\mathit{eB}}{\mathit{m_{e}}}=27.9925\,\textrm{GHz}$  for  $\mathit{B}=1\,\textrm{T}$ 

$$P = 1.17 \text{ fW for } B = 1 \text{ T and } \theta = \frac{\pi}{2}$$



# **CRES** challenges

- Radiated powers are very small
- Atomic tritium source required

- Molecular tritium has rotational and vibrational excitations that broaden the endpoint peak
- Production and preservation of atomic tritium is a key challenge for any future experiment





# **CRES** challenges

- Radiated powers are very small
- Atomic tritium source required
- Need to trap and observe  $\sim 10^{20}$  tritium atoms for  $\sim$  year

- Last eV of the spectrum contains 2.9 × 10<sup>-13</sup> of the events
- Necessitates an intense source





# Project 8



- Above: CRES signal from 30 keV <sup>83m</sup>Kr decay electrons in Phase I
- Phase II with molecular tritium in a ~ 1 T field
- Detected 3742 events over 82 days





# QTNM collaboration



Quantum Technologies for Neutrino Mass Collaboration

- Proposal goal: build a demonstrator apparatus for determining neutrino mass via CRES from tritium β-decay – CRESDA
- This entails:
  - Demonstration of confinement of atoms with densities of 10<sup>12</sup> - 10<sup>13</sup> cm<sup>-3</sup>, scalable to ultimate exposure of ~ 10<sup>20</sup> T atoms
  - Magnetic field mapping with  $< 1 \,\mu$ T absolute precision and  $\sim 1 \,\mu$ m
    - spatial resolution
  - Observation of CRES electrons (non-tritium source), potentially with quantum noise limited MW detection systems
  - Experiment to be built at University College London



# Potential project pathway





Quantum Technologies for Neutrino Mass Collaboration

- Basic technology demonstration at UCL (2021–2025)
- Tritium demonstrations at Culham (2025–2030+)
- Final neutrino mass experiment with ~ 10 - 50meV sensitivity at Culham or similar facility (2030–2040)





# **CRESDA** outline



 Consists of source, atomic trapping storage ring and instrumented CRES region



## Atomic source

When measuring the endpoint of atomic tritium any molecular tritium contamination acts as a background



- Cryogenic (30 K) pulsed supersonic source
- H<sub>2</sub>/D<sub>2</sub>/T<sub>2</sub> dissociation using DC discharge seeded with electron from tungsten filament





# Storage ring



- Need to confine neutral atoms and prevent them forming molecules on surfaces
- Advantages of storage ring design include:
  - Lower atomic losses than occur when loading a trap (no deceleration and cooling required)
  - Separates magnetic field requirements for optimal high-frequency resolution CRES from magnetic trapping
  - Scalability (see next slide...)



### Scalability of storage ring concept



One option: multiple CRES modules connected by single storage ring



### Electron trapping

$$f = \frac{1}{2\pi} \frac{eB}{m_e + E_k/c^2} = \frac{eB}{2\pi} \left(\frac{E_{\text{tot}}}{c^2}\right)^{-1} \qquad \frac{df}{dE_{\text{tot}}} = -\frac{eBc^2}{2\pi} (E_{\text{tot}})^{-2} = 51 \text{ kHz eV}^{-1}$$

for 
$$B = 1$$
 T,  $E_k = 18.6$  keV

 $\therefore$  for  $\Delta E = 1 \text{ eV}$ , we require  $\Delta f \approx 50 \text{ kHz}$ 

$$t_{\rm obs} \sim \frac{1}{\Delta f} \quad \therefore t_{\rm obs} \geq 20\,\mu s$$

An endpoint electron travelling at  $89^{\circ}$  to *B*-field will travel 275 m parallel to *B*-field in this time







Phys. Rev. C 99, 055501 (2019)

- Solution: Trap β-decay electrons in a 'no-work' trap where they can be continuously observed for 10s or 100s of μs
- Local minimum in magnitude of background B-field
- Require trapping field of order 1 mT against 1 T background
- Trap design has large effect on range of observed frequencies key to understand this



#### Importance of electron trap design





- Electrons with pitch angle, θ < 90° experience different average B-field as a result of motion in trap
- Deeper magnetic traps contain more electrons but these will radiate at different frequencies (for the same energy)
- Other features of the signal must be used to get best energy resolution



- Work ongoing to optimise trap and RF collection design
- Can simulate an (idealised) decay electron signal in a variety of traps using custom software
- Simulation includes electron propagation, RF collection and basic model of signal processing





- Many interesting CRES signal features that can be used to constrain electron energies
- Chirp rate of our signal tells us about the rate of energy loss





- Many interesting CRES signal features that can be used to constrain electron energies
- Chirp rate of our signal tells us about the rate of energy loss
- Sidebands caused by AM and FM of signal – tell us about axial motion of electron





- Many interesting CRES signal features that can be used to constrain electron energies
- Chirp rate of our signal tells us about the rate of energy loss
- Sidebands caused by AM and FM of signal – tell us about axial motion of electron
  - Discrete jumps in frequency caused by scattering from residual gas
    - need to fully understand frequency of these scatters in order to reconstruct original frequency





# CRES Magnet Assembly (CMA)



- Aim to detect CRES at cryogenic temperatures (minimise noise)
- Exploring use of quantum-limited amplifiers to overcome small signal power
- Possible electron source to calibrate energy



#### Quantum-limited microwave amplifiers

- CRES signal is very weak ( $\sim$  1 fW)
- State-of-the-art HEMT amplifiers have noise temperatures of about 7 K
- We require quantum-limited amplifiers:
  - Superconducting Low-Inductance Undulatory Galvanometer (SLUG)
  - Superconducting parametric amplifiers



# SLUG amplifiers





- Superconducting Low-inductance Undulatory Galvanometer
- Non-parametric low-noise cryogenic amplifier under development at NPL
- Nb nanobridge junctions fabricated (above left) to allow operation at high frequencies
- Numerical simulations and experiments ongoing to characterise and tune SLUGs for our use



### Superconducting parameteric amplifiers



- Members at Cambridge Quantum Sensors group have designed, fabricated and tested high-gain parametric amplifiers based on superconducting resonators
- Superconducting NbN optimised as amplifier material
- Right: Power gain vs frequency high gains with a bandwidth of several MHz. Distribution is two-sided about central RF frequency
- Noise measurement of amplifiers ongoing and making good progress



### Magnetometry

- Measuring electron energy with resolution of 10<sup>-6</sup> requires that *B*-field be known to similar level
- Deuterium or tritium atoms can be used as quantum sensors for *B*-field mapping to better than 1 µT
- Circular Rydberg states prepared in beam and passed through CRES volume
- Pulses of MW radiation drive Rydberg-Rydberg transitions – sensitive to *B*-field
  - Potential spatial resolution of 1 mm





# Magnetometry

- Current results:
  - Absolute field precision of ±2 µT, relative ±900 nT
  - Spatial resolution of ±0.87 mm
  - Electrometry precision of 85 μV cm<sup>-1</sup>
- Paper detailing method and results published this year<sup>a</sup>

<sup>a</sup>Zou, J.; Hogan, S. D. Phys. Rev. A 2023, 107.





## Summary

- The neutrino mass scale remains unknown but the answer has the potential to provide key constraints in several areas
- Current measurement techniques (MAC-E filters) are at their limits and cannot take us to an experiment with guaranteed discovery potential
- CRES is a recent technique that allows the measurement of electron energy at unprecedented precision
- The QTNM collaboration is building on unique quantum techniques to demonstrate the viability of a CRES experiment
- Provides the exciting possibility of having the ultimate neutrino mass experiment in the UK







### Thanks for listening!





# Backup



#### Are calorimetric techniques the solution?

- Can embed isotopes in microcalorimeters – decay via electron capture
- Calorimeter measures the atomic de-excitation energy (minus the neutrino's energy)
- <sup>163</sup>Ho used by ECHo and HOLMES collabs.



In order to get required energy resolution for a high enough activity may require thousands or 100s of thousands of microcalorimeters operated at mK level