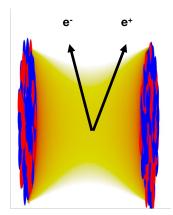
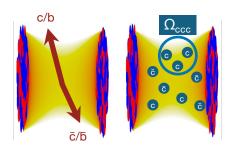

ALICE Future Opportunities

<u>L. Barnby</u>³, M. Chartier5, D. Evans¹, R. Lemmon², M. Völkl¹, M. Buckland², J. Dainton⁴, J. Norman⁵, J. Liu⁵, R. Lietava¹, A. Jusko¹, O. Villalobos Baillie¹

Birmingham¹, Daresbury², Derby³, Lancaster⁴, Liverpool⁵

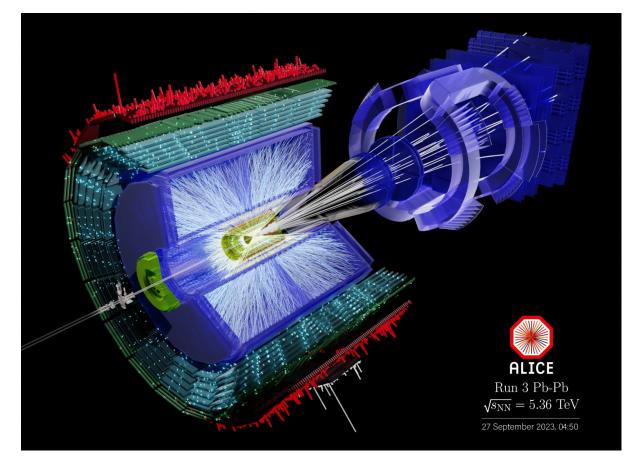
Physics of the QCD Phase Transition


- A quark-gluon plasma (QGP) is created in heavy-ion collisions due to energy density overcoming quark confinement
 - What are the properties of the QGP and how do they emerge from stronginteraction physics?
 - Precision measurements of both longwavelength properties and microscopic dynamics
 - Mechanism of phase transition back to hadronic matter

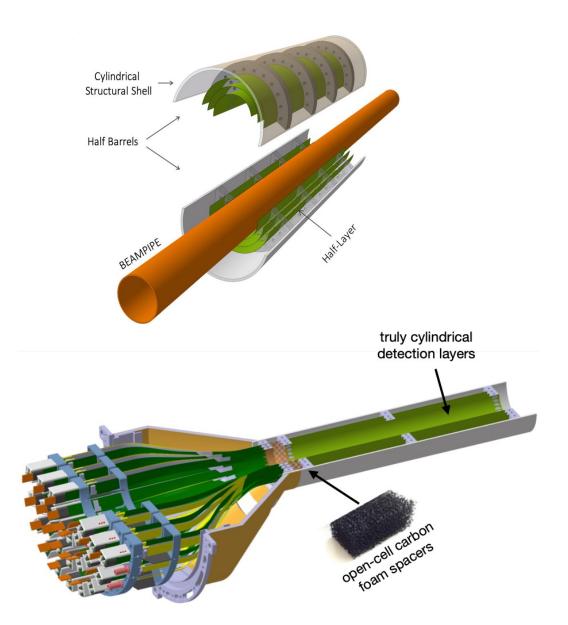


Heavy-ion collisions **at the LHC** are ideal to address these questions but require improved detector performance and larger data samples

Key Measurements


- Di-lepton measurements
 - Radiation from QGP via thermal (GeV) photons
 - Chiral symmetry restoration and modified hadron masses around the phase transition
- Heavy flavour measurements
 - Correlations between heavy quarks e.g tagged jets, mesons
 - Multi-charm objects e.g. Ω_{ccc}
- QCD 'factory' via hadronization
 - Light anti-nuclei, Y-N (Y-Y, N-N-N etc.) potentials

Current and near-term ALICE

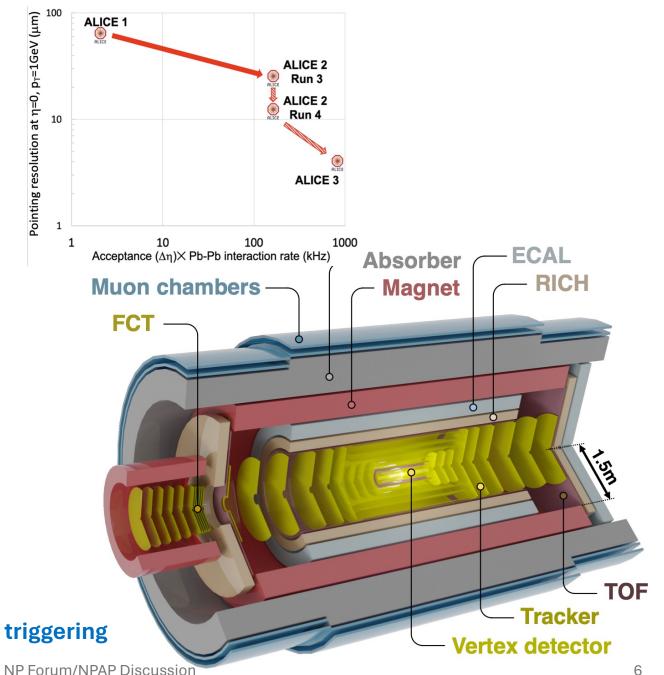

- ALICE upgrade completed in 2021
 - Complete replacement of inner tracker with 7-layer Si pixel detector
 - Re-instrumentation of TPC to allow continuous readout up to 50 kHz Pb-Pb (several 100 kHz pp)
 - Major upgrade of data pipeline, online and offline processing (TB/s)
- LHC Run 3 underway
 - Large heavy-ion data set (40x previous) collected in Autumn 2023, already reco'd, currently being analysed

Further running in 2024 and 20<mark>2</mark>5 before <u>Long</u> Shutdown 3 (2026-2028)

Medium term

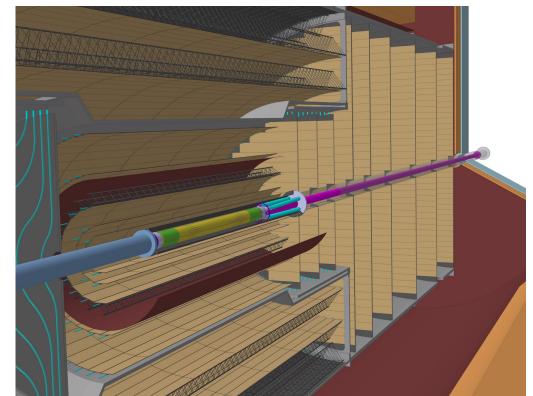
- ALICE will replace the inner 3 tracker layers with 'ITS3'
 - Thin flexible wafer bent at radii
 - Modified beampipe
- Key benefits
 - Very low material budget 0.07% X₀
 - Homogenous material distribution: negligible systematic error from this source
 - Improved (x2) pointing resolution
- In place for 2029-32 (Run 4)

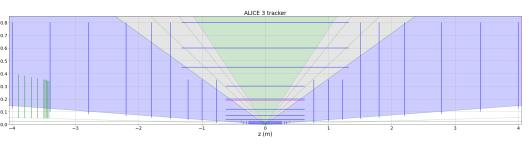
UK involvement in simulation, prototype, test beam


ALICE 3 Concept

 Novel and innovative detector concept

Pointing resolution at η =0, p_T=1GeV (μ m)

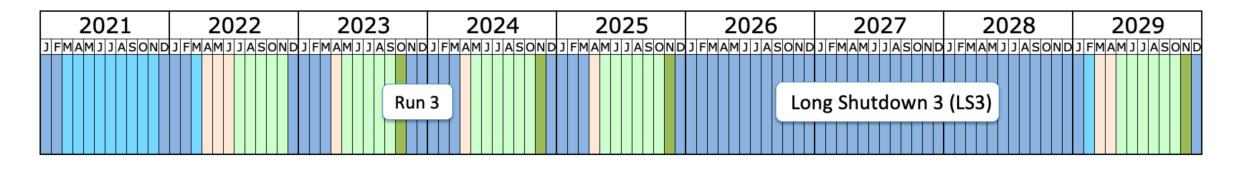

- Compact and lightweight allsilicon tracker
- Retractable vertex detector
- Extensive particle identification
- Large acceptance
- Superconducting magnet system
- Continuous read-out and online processing


UK proposed involvement in outer tracker and triggering

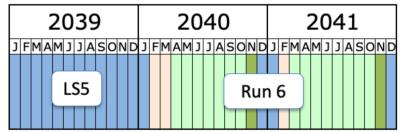
ALICE 3 Outer tracker

- 60 m² silicon pixel detector (MAPS)
 - Larger coverage: 8 units pseudorapidity
 - 'Compact': outer radius 80 cm, z ± 3.5 m
 - High-spatial resolution ~ 10 μm , pixel size 50 x 50 μm^2
 - Low material density, material budget
- R&D
 - Concept of module ~10 x 10 cm² based on a process which can be standardized for industry
 - Reduce/eliminate interdependence between modules (allow replacement)

ALICE 3 UK

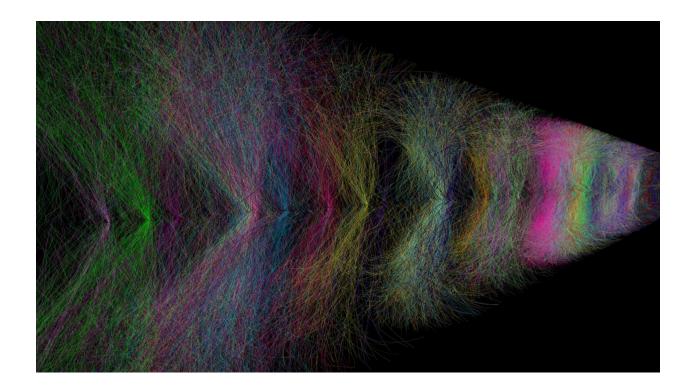

- People: Four existing group, universities of Birmingham, Liverpool and Derby and STFC Daresbury
 - Ownership of ALICE trigger, track record in Si detector design and build
 - Leadership track record with Collaboration Board chair, various coordinators, system running, trigger utilization, physics working groups, editorial board...
- Interest from beyond current groups with Si detector interests
- Resource: ALICE 3 is a (€/£/\$)100 M project
 - UK are around 2% of 'senior' members
 - Seeking larger strategic O(5M) investment in view of complementary development and synergies in detectors for future colliders

Wider picture


- ALICE 3 is the **clear preference** of the UK community but still at pre-approval stage, gathering funding agency commitments etc. (Not dependent on STFC/UKRI decision)
- Other LHC experiments participate in, and plan to continue with, HI running
 - e.g. Planned LHCb upgrade allows recording full centrality spectrum (up to dN_{ch}/dη ~ 2000), leverages (very) large UKRI investment
- We could conceivably seek to join and lead efforts in this area
 needs discussion with STFC and experiments
- ALICE 3 needs R&D support and future commitment during this 10-year period to be ready for Runs 5&6 (2035-2038 & 2040-41) [NuPECC]

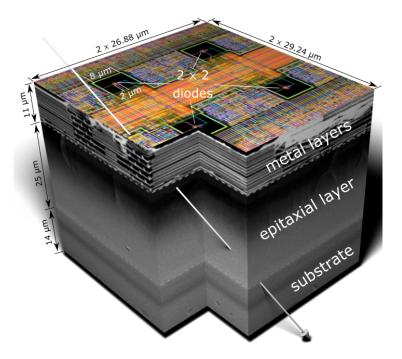
Backup

LHC Long term schedule


Shutdo Proton Ions Comm Hardw

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

Last update: April 2023


Reconstruction with continuous readout

 Assigning particle tracks to individual Pb-Pb interactions, represented by different colours, in a continuous readout mode

ALIPIDE

- Monolithic Active Pixel Sensor
- Currently employed in ALICE inner tracking pixel detector
- Developments for ITS3, thinner flexible sensor, and for ALICE 3

