
Accelerated computing with
CUDA C/C++

Dr. Jony Castagna

 FAST team leader - Hartree Centre

NVidia Deep Learning Institute Ambassador

Agenda

• What are GPUs?

• What is CUDA?

• CUDA Threads

• Memory management

• CUDA Streams

• Alternative programming models

• GPU implementations in HEP

Why we have GPUs?

Modern and future architectures

Long pipelined,

out-of-order

execution
Short pipelined,

cache coherent
Shared instruction

control, small cache

Single Core

Processor

Many-core Processor GPU

Field-Programmable

Gate Arrays

Quantum

Computing
Neuromorphic

Computing

First 10 of top 500 supercomputers

9/10
have
GPUs!

2 AMD
1 Intel
6 Nvidia

Green list
73 Gflops/Watts

 6 Nvidia
 4 AMD

Each node is made of
1 (or more) CPUs and
1 (or more) GPUs

… …

Typical hybrid CPU-GPU supercomputer

Example: Frontier
1 CPUs AMD EPYC (64-core)
4 GPUs AMD Instinct 250X

What are GPUs?

you don’t necessarily need a cluster!

37,888 Instinct MI250X

GPUs!

https://en.wikipedia.org/wiki/AMD_Instinct

NVidia GPUs
Tesla/Data Center Quadro GeForce Jetson/Tegra
 (HPC) (Visualization) (Gaming) (edge/auto)
- Tesla (1.x)
 - Fermi (2.x)
 - Kepler (3.x)
 - Maxwell (5.x)
 - Pascal (6.x)
 - Volta (7.x)
 Turing (7.5)
 - Ampere (8.x)
 Lovelace (8.9)
 - Hopper (9.x)
 - Blackwell (10.x)

Architecture identifier also corresponding to the
major number of Compute Capability index

NVidia H100

NVidia Tesla H100: 14592 CUDA cores!

● 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU
● 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU
● 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU
● 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers
● 60 MB L2 Cache
● Fourth-Generation NVLink and PCIe Gen 5

H100 white paper:
https://resources.nvidia.
com/en-us-tensor-core

NVidia H100
 NVIDIA H100 GPU Architecture In-Depth

21
NVIDIA H100 Tensor Core GPU Architecture

Figure 7. GH100 Streaming Multiprocessor (SM)

Nvidia GH100 SM architecture Full GPU has 144 SMs!

The Grace-Hopper superchip

Useful blog
https://developer.nvidia.com/blog/simplifyi
ng-gpu-programming-for-hpc-with-the-
nvidia-grace-hopper-superchip/

GH200 White paper
https://www.aspsys.com/wp-
content/uploads/2023/09/nvi
dia-grace-hopper-cpu-
whitepaper.pdf

High bandwidth and memory coherence!

H100 vs H200

DGX-GH200

up to 256 GPUs!

1 exaFlops FP8!

~£10M!

HPC and AI (I)

AI
($200 billions
 in 2023!)

HPC

($45 Billion in 2022)

no worry… likes GPUs!

Deep Learning does NOT
need double precision!

Application

HardwareAlgorithm

Ampere Hopper

HPC and AI (II)

No tensor core!

Solve a Tridiagonal matrix in parallel:

Thomas (sequential)
algorithm
for 1 CPU

Why is important to know the GPU hardware? (I)

Solve a Tridiagonal matrix in parallel:

For MPI/OpenMP you can use a partition method

MPI rank 0

MPI rank 1

MPI rank 2

MPI rank 3

Why is important to know the hardware? (II)

Solve a Tridiagonal matrix in parallel:

On GPU you MUST use a cyclic reduction method!

Each thread simplify
a pair of equations.

Why is important to know the hardware? (III)

Your role!

Scientist (usually):
- counts from 1
- likes Fortran
- interested in solving

PDE
- does not like AI

solving everything

Computational
scientist (usually):
- likes all languages
- wants to solve PDE efficiently (fast) and
 everywhere (portability)
- AI can help if combined with a
 physics background

Computer scientist
(usually):
- counts from 0
- likes C/C++/Python
- interested in

performance/hardware
- likes an AI super-

intelligence

Modern and future computational scientist!

Single Core

Processor

Many-core

 Processor
GPU

Field-Programmable

Gate Arrays
Quantum

Computing

Neuromorphic

Computing

today we are here!

1st Main Concepts: host (CPU) and device (GPU)

2nd Main Concepts : software abstraction

you can have billions of CUDA threads
despite you only have ~15000 CUDA
cores on a single GPU!

98 2 67 43 42 6 110 10 60 88 5 6

42 1 34 9 7 4 77 6 55 43 2 2

MPI
rank 0
core 0

MPI
rank 1
core 1

MPI
rank 2
core 2

56 1 33 34 35 2 33 4 5 45 3 4A
B

C

3rd Main Concepts : Fine Grain Parallelism (I)

98 2 67 43 42 6 110 10 60 88 5 6

42 1 34 9 7 4 77 6 55 43 2 2

MPI
rank 0
core 0

MPI
rank 1
core 1

MPI
rank 2
core 2

56 1 33 34 35 2 33 4 5 45 3 4A
B

C

3rd Main Concepts : Fine Grain Parallelism (I)

42 1 34 9 7 4 77 6 55 43 2 2

56 1 33 34 35 2 33 4 5 45 3 4A
B

0 1 2 3 4 5 6 7 8 9 10 11

1 CUDA threads per each element of the array!

you can have millions of CUDA threads despite you only have
~15000 CUDA cores on a single GPU!

98 2 67 43 42 6 110 10 60 88 5 6C

3rd Main Concepts : Fine Grain Parallelism (II)

Coalescent Access Uncoalescent Access

4th Main Concepts : memory coalescent

Resume Main Concepts

• Host (CPU) and device (GPU)

• Software Abstraction

• Fine Grain Parallelism Paradigm

• Memory Coalescent Access

The real challenge is NOT
porting to CUDA-C

The real challenge is to
satisfy those main
concepts: an algorithm
change may be required!

Very often from the algorithm change will benefit also
others architectures (vectorization, etc...)

Questions?

What is CUDA?
Compute Unified Device Architecture: is a parallel computing platform
and application programming interface (API) model created by NVidia.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Main References:

- CUDA is based on C/C++ language

- CUDA Fortran is a Fortran wrapper for CUDA C

- OpenACC are directives to offload kernels on GPU. It translates to CUDA-C.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

portability

p
e

rf
o

rm
an

ce

CUDA-C++

OpenACC

OpenMP

100%

Compilers currently
supporting OpenACC

- NVidia (PGI)
(Fortran/C/C++)

- Cray (Fortran)
- GCC (Fortran/C/C++)

Why CUDA?

productivity

p
e

rf
o

rm
an

ce

CUDA-C++

OpenACC

OpenMP

The future of parallel programming

However…

price ratio ~ 10
energy ratio ~ 2
memory bandwidth ~ 15

At least >2x
and ideally
>10x!!!

CPU

GPU

How it works

CPU

GPU

CPU

GPU

Transfer CPU (Host) to
GPU (Device)
is slow: try to avoid as
much as possible!

How it works

How it works

CUDA files Rest of C application

 NVCC CPU Compiler

 ptx CPU objects

CUDA objects
 link all to form
 executable

CUDA compiler

NVCC (NVidia CUDA compiler)
- Very robust!
- Backward compatible
- Released with the CUDA toolkit (12.5) or NVidia HPC SDK (24.5)
- Current version 12.5

CUDA toolkit version: do
NOT confuse with CUDA
architecture or Compute
Capability index!

grids
blocks

threads

Main Concepts I:
 software abstraction

These are
irrespective of the
number of cores!

CUDA Development Ecosystem (I)

CUDA Development Ecosystem (II)

https://developer.nvidia.com/tools-ecosystem

https://developer.nvidia.com/tools-ecosystem

CUDA Development Ecosystem (III)

https://developer.nvidia.com/tools-ecosystem

https://developer.nvidia.com/tools-ecosystem

The CUDA tools

• NSight (debugger)

• NVPP (performance)

• Code samples

• …and many more!!!

Ex.: Deep Learning Frameworks

CuDNN (CUDA Deep Neural Network library)

CUDA

NVidia drivers

GPU Hardware

Questions?

TOPICS

GPU-accelerated vs. CPU-only Applications

CUDA Kernel Execution

Parallel Memory Access

GPU occupancy

Kernel occupancy

Appendix: Glossary

CUDA threads

GPU-accelerated vs. CPU-only Applications

CPU

Time

initialize()

DATA

In CPU-only applications data is

allocated on CPU

CPU

Time

initialize() performWork()

DATA

…and all work is performed on CPU

CPU

Time

initialize() performWork() verifyWork()

DATA

…and all work is performed on CPU

In accelerated applications data is

allocated with
cudaMallocManaged()

CPU

DATA

GPU

CPU

Time

GPU

… where it can be accessed and

worked on by the CPU

CPU

DATA

GPU

CPU

Time

initialize()

GPU

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

GPU

… and automatically migrated to the

GPU where parallel work can be done

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

GPU

Work on the GPU is asynchronous,

and CPU can work at the same time

cpuWork()

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

s
y
n

c
h

ro
n

iz
e

GPU

CPU code can sync with the

asynchronous GPU work, waiting for it

to complete, with
cudaDeviceSynchronize()

cpuWork()

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

verifyWork()

s
y
n

c
h

ro
n

iz
e

GPU

… data accesses by the CPU will

automatically be migrated

cpuWork()

CUDA Kernel Execution

GPU

cpuWork()

s
y
n

c
h

ro
n

iz
e

CPU

DATA CPU

Time

initialize() verifyWork()

performWork()GPU

performWork<<<2, 4>>>()

GPUs do work in parallel

GPU

performWork<<<2, 4>>>()

GPU work is done in a thread

GPU

performWork<<<2, 4>>>()

Many threads run in parallel

GPU

A collection of threads is a block

GPU

performWork<<<2, 4>>>()

There are many blocks

GPU

performWork<<<2, 4>>>()

A collection of blocks is a grid

GPU

performWork<<<2, 4>>>()

GPU functions are called kernels

GPU

performWork<<<2, 4>>>()

Kernels are launched with an

execution configuration

GPU

performWork<<<2, 4>>>()

performWork<<<2, 4>>>()

The execution configuration defines

the number of blocks in the grid

GPU

performWork<<<2, 4>>>()

… as well as the number of threads in

each block

GPU

performWork<<<2, 4>>>()

GPU

Every block in the grid contains the

same number of threads

CUDA-Provided Thread Hierarchy Variables

performWork<<<2, 4>>>()

Inside kernels definitions, CUDA-

provided variables describe its

executing thread, block, and grid

GPU

gridDim.x is the number of blocks in

the grid, in this case 2

GPU

performWork<<<2, 4>>>()

2

blockIdx.x is the index of the

current block within the grid, in this
case 0

GPU

performWork<<<2, 4>>>()

0 1

blockIdx.x is the index of the

current block within the grid, in this
case 1

GPU

performWork<<<2, 4>>>()

0 1

performWork<<<2, 4>>>()

Inside a kernel blockDim.x describes

the number of threads in a block. In
this case 4

GPU

4

performWork<<<2, 4>>>()

All blocks in a grid contain the same
number of threads

GPU

4 4

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 0

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 1

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 2

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 3

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 0

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 1

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 2

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x

describes the index of the thread within
a block. In this case 3

GPU

0 1 2 3 0 1 2 3

Coordinating Parallel Threads

cpuWork()

s
y
n

c
h

ro
n

iz
e

CPU

CPU

Time

initialize() verifyWork()

performWork()

GPUDATA

GPU

performWork<<<2, 4>>>()

Assume data is in a 0 indexed vector

GPU

DATA
GPUGPU

performWork<<<2, 4>>>()

Assume data is in a 0 indexed vector

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

Somehow, each thread must be

mapped to work on an element in the

vector

performWork<<<2, 4>>>()

Recall that each thread has access to
the size of its block via blockDim.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

performWork<<<2, 4>>>()

…and the index of its block within the
grid via blockIdx.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

0 1

performWork<<<2, 4>>>()

…and its own index within its block via
threadIdx.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

0 1

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Using these variables, the formula
threadIdx.x + blockIdx.x *

blockDim.x will map each thread to

one element in the vector

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 0 4

dataIndex

0

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 0 4

dataIndex

1

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 0 4

dataIndex

2

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 0 4

dataIndex

3

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex

5

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex

6

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 1 4

dataIndex

7

Grid Size Work Amount Mismatch

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

In previous scenarios, the number of

threads in the grid matched the

number of elements exactly

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

What if there are more threads than

work to be done?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Attempting to access non-existent

elements can result in a runtime error

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Code must check that the dataIndex

calculated by threadIdx.x +

blockIdx.x * blockDim.x is less

than N, the number of data elements.

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex < N = Can work

4 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex < N = Can work

4 5 true

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex < N = Can work

5 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex < N = Can work

5 5 false

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 false

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 false

Grid-Stride Loops

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

Often there are more data

elements than there are

threads in the grid

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

In such scenarios threads

cannot work on only one

element

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

… or else work is left

undone

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

One way to address this

programmatically is with a

grid-stride loop

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

In a grid-stride loop, the

thread’s first element is

calculated as usual, with
threadIdx.x +

blockIdx.x *

blockDim.x

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The thread then strides

forward by the number of

threads in the grid
(blockDim.x *

gridDim.x), in this case
8

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

It continues in this way until

its data index is greater than

the number of data
elements

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

It continues in this way until

its data index is greater than

the number of data
elements

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in

this way, all elements are

covered

CUDA runs as many blocks

in parallel at once as the

GPU hardware supports, for
massive parallelization

Occupancy

- GPU Occupancy

- Kernel Occupancy

NVIDIA GPUs contain

functional units called

Streaming

Multiprocessors, or SMs

GPU
SM

GPU
SM

Blocks of threads are

scheduled to run on SMs

kernel<<<24, 4>>>()

GPU
SM

kernel<<<24, 4>>>()

Depending on the number of

SMs on a GPU, and the

requirements of a block,

more than one block can be

scheduled on an SM

kernel<<<24, 4>>>()

GPU
SM

Depending on the number of

SMs on a GPU, and the

requirements of a block,

more than one block can be

scheduled on an SM

GPU
SM

kernel<<<24, 4>>>()

Grid dimensions divisible by

the number of SMs on a

GPU can promote full SM

utilization

Here there are fallow SMs

kernel<<<24, 4>>>()

GPU
SM

Kernel Occupancy

Remember:

In the H100 you have 256KB

register per multiprocessor.

The total number of “threads X

register per threads” cannot

exceed this value!!

compile your code with the following nvcc option:

 --ptxas-options=-v

you will get something like this:

ptxas info : 0 bytes gmem

ptxas info : Compiling entry function

'_Z28MyKernelhS0_S0_PK3CDRS0_Ph' for 'sm_20'

ptxas info : Function properties for

_Z28MyKernelhS0_S0_PK3CDRS0_Ph

24 bytes stack frame, 0 bytes spill stores, 0 bytes spill

loads

ptxas info : Used 29 registers, 80 bytes cmem[0], 4

bytes cmem[16]

Kernal Occupancy

Occupancy =

max number of active warps

max number of warps per SM

Warp = 32 threads

Block size should be a multiple of 32 (128,256 usually)!

Spreadsheet calculator

https://xmartlabs.github.io/cuda-calculator/

Or google for:

CUDA spreadsheet calculator excel

https://xmartlabs.github.io/cuda-calculator/

Glossary

Glossary
— cudaMallocManaged(): CUDA function to allocate memory accessible by both the CPU and GPUs. Memory

allocated this way is called unified memory and is automatically migrated between the CPU and GPUs as needed.
— cudaDeviceSynchronize(): CUDA function that will cause the CPU to wait until the GPU is finished working.
— Kernel: A CUDA function executed on a GPU.
— Thread: The unit of execution for CUDA kernels.
— Block: A collection of threads.
— Grid: A collection of blocks.
— Execution context: Special arguments given to CUDA kernels when launched using the <<<…>>> syntax. It defines

the number of blocks in the grid, as well as the number of threads in each block.
— gridDim.x: CUDA variable available inside executing kernel that gives the number of blocks in the grid
— blockDim.x: CUDA variable available inside executing kernel that gives the number of threads in the thread’s

block
— blockIdx.x: CUDA variable available inside executing kernel that gives the index the thread’s block within the

grid
— threadIdx.x: CUDA variable available inside executing kernel that gives the index the thread within the block
— threadIdx.x + blockIdx.x * blockDim.x: Common CUDA technique to map a thread to a data element
— Grid-stride loop: A technique for assigning a thread more than one data element to work on when there are more

elements than the number of threads in the grid. The stride is calculated by gridDim.x * blockDim.x, which is
the number of threads in the grid.

Questions?

How to access to the course online

1. WIFI Info: eduroam

2. Browser Recommendation: Chrome

3. websocketstest.courses.nvidia.com

4. https://learn.nvidia.com/dli-event

5. Create an Nvidia Developer Account (if you have not done yet)

6. Event code: STFC_CUDA_AMBASSADOR_MAY24

7. Work through the Introduction Section and ‘Start’ launching your first
GPU task

http://websocketstest.courses.nvidia.com/
https://learn.nvidia.com/dli-event

Memory Management

- Type of Memories

- Unified memory behaviour

- Non-Unified memory

- cudaMemcpyAsync

Type of Memories

Device Memory:
• Global Memory
• Texture Memory
• Local Memory
• Constant Memory

On Chip Memory:
• Shared Memory (L1 Cache)
• Registers

DRAM

Device Memory
Memory Location Access Scope Lifetime CUDA qualifier

Global DRAM RW All threads and host Application cudaMalloc

cudaMallocManaged

cudaMallocHost

Local DRAM RW 1 thread Thread

Constant DRAM R All threads and host Application __constant__

Texture DRAM R All threads and host Application texture

- Global memory is the largest memory on the GPU

- Local memory are local registers spilled into the global memory

- Constant memory is useful to store constant read in values (ex. g, c, R, etc.)

- Texture memory allows interpolation on 2D constant matrix values (ex. PVT table)

On chip Memory
Memory Location Access Scope Lifetime CUDA qualifier

Register On chip RW 1 thread Thread

Shared On chip RW All threads in a block Block __shared__

- Registers per thread can be found at compile time

- Shared memory can enhance performance when locality is high

Unified Memory (2014)
Before CUDA 6 After CUDA 6

Simplifies code writing

Applies to Global

Memory only!

Grace-Hopper Unified Memory (2022)

Careful!! This concept is NOT the unified memory

referred here!

In CUDA:

-gpu=unified

-gpu=unified (implies managed)
https://developer.nvidia.com/blog/uni

fied-memory-cuda-beginners/

In OpenACC

-ta=tesla:managed

New unified memory (I)

New unified memory (II)

New unified memory (III)

Unified Memory Behavior

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

… data accesses by the CPU will

automatically be migrated

When UM is allocated, it may not be

resident initially on the CPU or the

GPU

?

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

When some work asks for the memory

for the first time, a page fault will

occur

init()

?

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

The page fault will trigger the migration

of the demanded memory

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the

memory is requested somewhere in

the system where it is not resident

?
work<<<>>>()

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the

memory is requested somewhere in

the system where it is not resident

work<<<>>>()

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

work<<<>>>()

If it is known that the memory will be

accessed somewhere it is not resident,

asynchronous prefetching can be used

cudaMemPrefetchAsync(cpu)

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

work<<<>>>()

This moves the memory in larger

batches, and prevents page faulting

cudaMemPrefetchAsync(cpu) check()

Non-Unified Memory

CPU

DATA

GPU

CPU

Time

cudaMalloc()

GPU

Memory can be allocated directly to

the GPU with `cudaMalloc`

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

Memory can be allocated directly to

the host with `cudaMallocHost`

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cudaMemcpy(HtoD)

Memory allocated in either of these

ways can be copied to other locations

in the system with `cudaMemCpy`

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cudaMemcpy(HtoD)

Copying leaves 2 copies in of in the

system

cudaMemcpyAsync

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cudaMemcpyAsync(HtoD)

`cudaMemcpyAsync` can

asynchronously transfer memory over

a non-default stream

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy

This can allow the overlapping

memory copies and computation

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy

work

This can allow the overlapping

memory copies and computation

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy cpy

work work

This can allow the overlapping

memory copies and computation

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy cpy cpy

work work work

This can allow the overlapping

memory copies and computation

CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy cpy cpy cpy

work work work work

This can allow the overlapping

memory copies and computation

CUDA streams

- Default stream

- Concurrent streams

Default Stream

A stream is a series of instructions,

and CUDA has a default stream

Time

DEFAULT STREAM

By default, CUDA kernels run in the

default stream

Time

kernel 1

DEFAULT STREAM

In any stream, including the default, an

instruction in it (here a kernel launch)

must complete before the next can

begin

Time

kernel 1 kernel 2

DEFAULT STREAM

Time

kernel 1 kernel 2 kernel 3 kernel 4 kernel 5

DEFAULT STREAM

In any stream, including the default, an

instruction in it (here a kernel launch)

must complete before the next can

begin

Concurrent streams

Non-default streams can also be

created for kernel execution

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

Non-default streams can also be

created for kernel execution

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

Kernels within any single stream must

execute in order

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

However, kernels in different, non-

default streams, can interact

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3

However, kernels in different, non-

default streams, can interact

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

However, kernels in different, non-

default streams, can interact

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4 kernel 5

However, kernels in different, non-

default streams, can interact

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4 kernel 5

kernel 6

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

kernel 5

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

kernel 5

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

kernel 5

kernel 6

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

kernel 5

kernel 7

kernel 6

The default stream is special: it blocks

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4

kernel 5

kernel 7

kernel 6

The default stream is special: it blocks

all kernels in all other streams

Questions?

Profiler and other tools

- NSight

- Debugger, cuda-memcheck, etc.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

▪ Analyze your code to determine most
likely places needing parallelization or
optimization.

▪ Parallelize your code by starting with the
most time consuming parts, check for
correctness and then analyze it again.

▪ Optimize your code to improve observed
speed-up from parallelization.

Analyze

ParallelizeOptimize

Analyze

The deployment cycle

Nsight Systems - Analyze
application algorithm
system-wide

Nsight Compute -
Debug/optimize CUDA
kernel

Nsight Graphics -
Debug/optimize graphics
workloads

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVidia tools

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA Nsight Systems CLI provides

▪ Simple interface to collect data

▪ Can be copied to any system and analysed later

▪ Profiles both serial and parallel code

▪ For more info enter nsys --help on the terminal

To profile a serial application with NVIDIA Nsight Systems, we use NVIDIA Tools Extension
(NVTX) API functions in addition to collecting backtraces while sampling.

Using Command Line Interface (CLI)

Profiling via command line

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

What is it?

▪ A C-based Application Programming Interface (API) for annotating events

▪ Can be easily integrated to the application

▪ Can be used with NVIDIA Nsight Systems

Why?

▪ Allows manual instrumentation of the application

▪ Allows additional information for profiling (e.g: tracing of CPU events and time ranges)

How?

▪ Import the header only C library nvToolsExt.h

▪ Wrap the code region or a specific function with nvtxRangePush() and nvtxRangPop()

NVIDIA Tools Extension API (NVTX) library

Profiling using NVTX (I)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include "laplace2d.h"
#include <nvtx3/nvToolsExt.h>

int main(int argc, char** argv)
{
 const int n = 4096;
 const int m = 4096;
 const int iter_max = 1000;

 const double tol = 1.0e-6;
 double error = 1.0;

 double *restrict A = (double*)malloc(sizeof(double)*n*m);
 double *restrict Anew = (double*)malloc(sizeof(double)*n*m);

nvtxRangePushA("init");
 initialize(A, Anew, m, n);

nvtxRangePop();

 printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);

 double st = omp_get_wtime();
 int iter = 0;

nvtxRangePushA("while");
 while (error > tol && iter < iter_max)
 {

nvtxRangePushA("calc");
 error = calcNext(A, Anew, m, n);

nvtxRangePop();

nvtxRangePushA("swap");
 swap(A, Anew, m, n);

nvtxRangePop();

 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

 iter++;
 }

nvtxRangePop();

 double runtime = omp_get_wtime() - st;

 printf(" total: %f s\n", runtime);

 deallocate(A, Anew);

 return 0;
}

jacobi.c
(starting and ending of ranges are
highlighted with the same color)

Open laplace-seq.qdrep with
Nsight System GUI to view the

timeline

“calc” region (calcNext function) takes 26.6%
“swap” region (swap function) takes 23.4% of

total execution time

-t Selects the APIs to be traced (nvtx in this example)

--status if true, generates summary of statistics after the collection

-b Selects the backtrace method to use while sampling. The option dwarf

uses DWARF's CFI (Call Frame Information).

--force-overwrite if true, overwrites the existing results

-o sets the output (qdrep) filename

NVTX range
statistics

Profiling using NVTX (II) SEQUENTIAL

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#include <math.h>
#include <stdlib.h>

#define OFFSET(x, y, m) (((x)*(m)) + (y))

void initialize(double *restrict A, double *restrict Anew, int m, int n)
{
 memset(A, 0, n * m * sizeof(double));
 memset(Anew, 0, n * m * sizeof(double));

 for(int i = 0; i < m; i++){
 A[i] = 1.0;
 Anew[i] = 1.0;
 }
}

double calcNext(double *restrict A, double *restrict Anew, int m, int n)
{
 double error = 0.0;

#pragma acc parallel loop reduction(max:err)

 for(int j = 1; j < n-1; j++)
 {

#pragma acc loop
 for(int i = 1; i < m-1; i++)
 {
 Anew[OFFSET(j, i, m)] = 0.25 * (A[OFFSET(j, i+1, m)] + A[OFFSET(j, i-1, m)]
 + A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)]);
 error = max(error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m)]));
 }
 }
 return error;
}

void swap(double *restrict A, double *restrict Anew, int m, int n)
{

#pragma acc parallel loop
 for(int j = 1; j < n-1; j++)
 {

#pragma acc loop
 for(int i = 1; i < m-1; i++)
 {
 A[OFFSET(j, i, m)] = Anew[OFFSET(j, i, m)];
 }
 }
}

void deallocate(double *restrict A, double *restrict Anew)
{
 free(A);
 free(Anew);
}

laplace2d.c
(Parallelised using OpenACC parallel

directives (pragmas highlighted)

Open laplace-par.qdrep
with Nsight System GUI to

view the timeline

“calc” region (calcNext function) takes 29.2%
“swap” region (swap function) takes 18.3% of

total execution time

NVTX range
statistics

CUDA API
statistics

CUDA Kernel
statistics

CUDA
Memory

Operation
statistics

Profiling using NVTX (III) PARALLEL

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Open the generated report files
(*.qdrep) from command line in the
Nsight Systems profiler.

File > Open

Using Nsight Systems

Profiling using Nsight

Processes

and

threads

CUDA and

OpenGL API trace

Multi-GPU

Kernel and memory

transfer activities

cuDNN and

cuBLAS trace

Thread/core

migration

Thread state

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Other tools

If you can, do not debug via print!!!

You could use instead
Visual Studio Code with Nsight

https://developer.nvidia.com/nsight-visual-

studio-code-edition

Examples

 - Porting DL_MESO to CUDA

 - DL_MESO on multi-GPU

An Hartree application:
porting DL_MESO to CUDA

What is DPD and DL_MESO?

…coarse grain representation using beads

Vesicle Formation

Lipid Bilayer

DL_MESO: highly scalable mesoscale simulations

Molecular Simulation 39 (10) pp. 796-821, 2013

Dissipative Particle Dynamics (DPD)…
DL_MESO: software package developed by

Michael Seaton at DL

Porting DL_MESO to GPUs

Main problem: memory access pattern

Very uncoalescent access to the memory!
particle locations are stored in a continuous order…

… x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 …

… y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 …

… z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 …

cell-linked method

thread: … 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

i = 7

particle:

Interactions in cell j for particle i: 7-6; 7-13 ; 7-16; etc.

Reorganize the cell-linked array

cell j

j-lx j-lx+1 … j-1 j j+1 … j+lx

x16 x10 x2 x7 x30 x25

y16 y10 y2 y7 y30 y25

z16 z10 z2 z7 z30 z25

x29 x19 x4 x6 x23 x11

y29 y19 y4 y6 y23 y11

z29 z19 z4 z6 z23 z11

x18 x14 x17 x13 x22 x12

y18 y14 y17 y13 y22 y12

z18 z14 z17 z13 z22 z12

c
o

a
le

s
c

e
n

t!

- saving a N = 6*(maxNpc-1) of

uncoalescent accesses per time step

per thread!

- 6 because 3 positions and 3 velocities

- (maxNPc = max numer of particles per

cell)

thread

cells locations are stored in a continuous order…

thread j access to j-lx location

thread j+1 access to j-lx+1 location

coalescent!

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Sp
e

e
d

u
p

Million of particles

A100 vs Intel 6 cores

V100 vs Intel 6 cores

A100 vs AMD 24 cores

V100 vs AMD 24 cores

Speedup on single GPU

Speedup on GPU vs:

 - AMD EPYC 7402 (Rome) 24 cores

 - Intel Xeon(R) W-2133 CPU @ 3.60GHz 6 cores

Test case: large mixture

with constant the ratio

particles/volume = 4

88% memory

used!

Castagna et al. “Towards Extreme Scale Dissipative Particle Dynamics Simulations using

Multiple GPGPUs” Comput. Physi. Comm. (2020)

GPU 0 GPU 1

GPU 2 GPU 3

Multi GPU version

in 3D you have

26 GPUs/GPU!!

Overlap computation with communication

Compute forces

between particles

For internal cells

swap in x

swap in y

swap in z

Compute

boundary cell

forces between

particles

Ghost cells External Cells

internal cells

CUDA

stream 1

CUDA stream 2

Scaling on different supercomputers

Animation Water Drop formation on 8 GPUs showing the

impact of load balancing routine ALL

(ALL is from Julich Supercomputer Centre)

Adding Load Balance

Largest simulation: 14 billion

particles!

D. Di Giusto and J. Castagna et al. “Scalable algorithm for many-body Dissipative

Particle Dynamics using multiple General Purpose Graphic Processing Units”

Comput. Physi. Comm. (2022)

Strong scaling: 4096 GPUs (Piz Daint)

proper overlap computation-communication

has a strong impact on scaling!

Resume

- DL_MESO has been ported to single and multi-GPU

nNVidia GPUs using CUDA language

- Good scaling up to 4096 GPU

- We can now run very large DPD simulations (14 billions)

- Load balance allows to run simulations without out of

memory on the GPU, as well as save computational time

- 2 publications on journal paper (CPC)

Questions?

	Slide 1: Accelerated computing with CUDA C/C++
	Slide 2: Agenda
	Slide 3: Why we have GPUs?
	Slide 4: Modern and future architectures
	Slide 5
	Slide 6
	Slide 7: What are GPUs?
	Slide 8: NVidia GPUs
	Slide 9: NVidia H100
	Slide 10: NVidia H100
	Slide 11: The Grace-Hopper superchip
	Slide 12: H100 vs H200
	Slide 13: DGX-GH200
	Slide 14: HPC and AI (I)
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: What is CUDA?
	Slide 30
	Slide 31
	Slide 32
	Slide 33: How it works
	Slide 34: How it works
	Slide 35: How it works
	Slide 36: CUDA compiler
	Slide 37
	Slide 38: CUDA Development Ecosystem (I)
	Slide 39: CUDA Development Ecosystem (II)
	Slide 40: CUDA Development Ecosystem (III)
	Slide 41: The CUDA tools
	Slide 42: Ex.: Deep Learning Frameworks
	Slide 43
	Slide 44
	Slide 45: GPU-accelerated vs. CPU-only Applications
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: CUDA Kernel Execution
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: CUDA-Provided Thread Hierarchy Variables
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Coordinating Parallel Threads
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Grid Size Work Amount Mismatch
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Grid-Stride Loops
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149: GPU
	Slide 150: GPU
	Slide 151: GPU
	Slide 152
	Slide 153: GPU
	Slide 154
	Slide 155
	Slide 156: Kernal Occupancy
	Slide 157
	Slide 158: Glossary
	Slide 159: Glossary
	Slide 160
	Slide 161
	Slide 162: Memory Management - Type of Memories - Unified memory behaviour - Non-Unified memory - cudaMemcpyAsync
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171: Unified Memory Behavior
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179: Non-Unified Memory
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: cudaMemcpyAsync
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191: CUDA streams - Default stream - Concurrent streams
	Slide 192: Default Stream
	Slide 193: DEFAULT STREAM
	Slide 194: DEFAULT STREAM
	Slide 195: DEFAULT STREAM
	Slide 196
	Slide 197: Concurrent streams
	Slide 198: DEFAULT STREAM
	Slide 199: DEFAULT STREAM
	Slide 200: DEFAULT STREAM
	Slide 201: DEFAULT STREAM
	Slide 202: DEFAULT STREAM
	Slide 203: DEFAULT STREAM
	Slide 204: DEFAULT STREAM
	Slide 205: DEFAULT STREAM
	Slide 206: DEFAULT STREAM
	Slide 207: DEFAULT STREAM
	Slide 208: DEFAULT STREAM
	Slide 209: DEFAULT STREAM
	Slide 210: DEFAULT STREAM
	Slide 211: DEFAULT STREAM
	Slide 212: DEFAULT STREAM
	Slide 213: DEFAULT STREAM
	Slide 214: DEFAULT STREAM
	Slide 215
	Slide 216: Profiler and other tools - NSight - Debugger, cuda-memcheck, etc.
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226: Examples - Porting DL_MESO to CUDA - DL_MESO on multi-GPU
	Slide 227: An Hartree application: porting DL_MESO to CUDA
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236

