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Agenda

• What are GPUs?

• What is CUDA?

• CUDA Threads

• Memory management

• CUDA Streams

• Alternative programming models

• GPU implementations in HEP



Why we have GPUs?



Modern and future architectures

Long pipelined,

out-of-order 

execution
Short pipelined,

cache coherent
Shared instruction 

control, small cache

Single Core

Processor

Many-core Processor GPU

Field-Programmable

Gate Arrays

Quantum

Computing
Neuromorphic

Computing



First 10 of top 500 supercomputers

9/10 
have 
GPUs!

2 AMD
1 Intel
6 Nvidia

Green list
73 Gflops/Watts

      6 Nvidia
      4 AMD



Each node is made of
1 (or more) CPUs and
1 (or more ) GPUs

… …

Typical hybrid CPU-GPU supercomputer

Example: Frontier
1 CPUs AMD EPYC (64-core)
4 GPUs AMD Instinct 250X



What are GPUs?

you don’t necessarily need a cluster!

37,888 Instinct MI250X 

GPUs!

https://en.wikipedia.org/wiki/AMD_Instinct


NVidia GPUs
Tesla/Data Center                  Quadro             GeForce               Jetson/Tegra
   (HPC)                                 (Visualization)     (Gaming)                 (edge/auto)
- Tesla (1.x)
 - Fermi (2.x)
 - Kepler (3.x)
 - Maxwell (5.x)
 - Pascal (6.x)
 - Volta (7.x)
    Turing (7.5)
 - Ampere (8.x)
    Lovelace (8.9)
 - Hopper (9.x)
 - Blackwell (10.x)

Architecture identifier also corresponding to the 
major number of Compute Capability index



NVidia H100

NVidia Tesla H100: 14592 CUDA cores!

● 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU 
● 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU 
● 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU 
● 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers 
● 60 MB L2 Cache 
● Fourth-Generation NVLink and PCIe Gen 5

H100 white paper:
https://resources.nvidia.
com/en-us-tensor-core



NVidia H100
                                                                                           NVIDIA H100 GPU Architecture In-Depth 

21 
NVIDIA H100 Tensor Core GPU Architecture 

 

Figure 7. GH100 Streaming Multiprocessor (SM) 

  

Nvidia GH100 SM architecture Full GPU has 144 SMs!



The Grace-Hopper superchip

Useful blog
https://developer.nvidia.com/blog/simplifyi
ng-gpu-programming-for-hpc-with-the-
nvidia-grace-hopper-superchip/

GH200 White paper
https://www.aspsys.com/wp-
content/uploads/2023/09/nvi
dia-grace-hopper-cpu-
whitepaper.pdf

High bandwidth and memory coherence!



H100 vs H200



DGX-GH200

up to 256 GPUs!

1 exaFlops FP8!

~£10M! 



HPC and AI (I)

AI
($200 billions
    in 2023!)

HPC

($45 Billion in 2022)

no worry… likes GPUs!



Deep Learning does NOT 
need double precision!

Application

HardwareAlgorithm

Ampere                           Hopper

HPC and AI (II)

No tensor core!



Solve a Tridiagonal matrix in parallel:

Thomas (sequential) 
algorithm
for 1 CPU

Why is important to know the GPU hardware? (I)



Solve a Tridiagonal matrix in parallel:

For MPI/OpenMP you can use a partition method

MPI rank 0

MPI rank 1

MPI rank 2

MPI rank 3

Why is important to know the hardware? (II)



Solve a Tridiagonal matrix in parallel:

On GPU you MUST use a cyclic reduction method!

Each thread simplify 
a pair of equations.

Why is important to know the hardware? (III)



Your role!

Scientist (usually):
- counts from 1
- likes Fortran
- interested in solving 

PDE
- does not like AI 

solving everything

Computational 
scientist (usually):
- likes all languages
- wants to solve PDE efficiently (fast) and 
     everywhere (portability)
- AI can help if combined with a 
  physics background

Computer scientist 
(usually):
- counts from 0
- likes C/C++/Python
- interested in 

performance/hardware
- likes an AI super-

intelligence



Modern and future computational scientist!

Single Core

Processor

Many-core

 Processor
GPU

Field-Programmable

Gate Arrays
Quantum

Computing

Neuromorphic

Computing

today we are here!



1st Main Concepts: host (CPU) and device (GPU)



2nd Main Concepts : software abstraction

you can have billions of CUDA threads 
despite you only have ~15000 CUDA 
cores on a single GPU!



98 2 67 43 42 6 110 10 60 88 5 6

42 1 34 9 7 4 77 6 55 43 2 2

MPI 
rank 0
core 0

MPI 
rank 1
core 1

MPI 
rank 2
core 2

56 1 33 34 35 2 33 4 5 45 3 4A
B

C

3rd Main Concepts : Fine Grain Parallelism  (I)



98 2 67 43 42 6 110 10 60 88 5 6

42 1 34 9 7 4 77 6 55 43 2 2

MPI 
rank 0
core 0

MPI 
rank 1
core 1

MPI 
rank 2
core 2

56 1 33 34 35 2 33 4 5 45 3 4A
B

C

3rd Main Concepts : Fine Grain Parallelism  (I)



42 1 34 9 7 4 77 6 55 43 2 2

56 1 33 34 35 2 33 4 5 45 3 4A
B

0            1             2            3             4           5             6           7             8           9      10          11

1 CUDA threads per each element of the array!

you can have millions of CUDA threads despite you only have 
~15000 CUDA cores on a single GPU!

98 2 67 43 42 6 110 10 60 88 5 6C

3rd Main Concepts : Fine Grain Parallelism  (II)



Coalescent Access            Uncoalescent Access

4th Main Concepts : memory coalescent



Resume Main Concepts

• Host (CPU) and device (GPU)

• Software Abstraction

• Fine Grain Parallelism Paradigm

• Memory Coalescent Access

The real challenge is NOT 
porting to CUDA-C

The real challenge is to 
satisfy those main 
concepts: an algorithm 
change may be required! 

Very often from the algorithm change will benefit also 
others architectures (vectorization, etc...)



Questions?



What is CUDA?
Compute Unified Device Architecture: is a parallel computing platform 
and application programming interface (API) model created by NVidia.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Main References:

- CUDA is based on C/C++ language

- CUDA Fortran is a Fortran wrapper for CUDA C

- OpenACC are directives to offload kernels on GPU. It translates to CUDA-C.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


portability

p
e

rf
o

rm
an

ce

CUDA-C++

OpenACC

OpenMP

100%

Compilers currently 
supporting OpenACC

- NVidia (PGI) 
(Fortran/C/C++)

- Cray (Fortran)
- GCC (Fortran/C/C++)

Why CUDA?

productivity

p
e

rf
o

rm
an

ce

CUDA-C++

OpenACC

OpenMP



The future of parallel programming



However…

price ratio ~ 10
energy ratio ~ 2
memory bandwidth ~ 15

At least >2x 
and ideally 
>10x!!!

CPU

GPU



How it works

CPU

GPU

CPU

GPU

Transfer CPU (Host) to 
GPU (Device)
is slow: try to avoid as 
much as possible!



How it works



How it works

CUDA files                      Rest of C application

   NVCC                                 CPU Compiler       
 
       ptx                                  CPU objects

CUDA objects    
                                       link all to form        
                                        executable                      



CUDA compiler

NVCC (NVidia CUDA compiler)
- Very robust!
- Backward compatible
- Released with the CUDA toolkit (12.5) or NVidia HPC SDK (24.5)
- Current version 12.5

CUDA toolkit version: do 
NOT confuse with CUDA 
architecture or Compute 
Capability index!



grids
blocks

threads

Main Concepts I:
 software abstraction

These are 
irrespective of the 
number of cores!



CUDA Development Ecosystem (I)



CUDA Development Ecosystem (II)

https://developer.nvidia.com/tools-ecosystem

https://developer.nvidia.com/tools-ecosystem


CUDA Development Ecosystem (III)

https://developer.nvidia.com/tools-ecosystem

https://developer.nvidia.com/tools-ecosystem


The CUDA tools

• NSight (debugger)

• NVPP (performance)

• Code samples

• …and many more!!!



Ex.: Deep Learning Frameworks

CuDNN (CUDA Deep Neural Network library)

CUDA

NVidia drivers

GPU Hardware



Questions?



TOPICS

GPU-accelerated vs. CPU-only Applications

CUDA Kernel Execution

Parallel Memory Access

GPU occupancy

Kernel occupancy

Appendix: Glossary

CUDA threads



GPU-accelerated vs. CPU-only Applications



CPU

Time

initialize()

DATA

In CPU-only applications data is 

allocated on CPU



CPU

Time

initialize() performWork()

DATA

…and all work is performed on CPU



CPU

Time

initialize() performWork() verifyWork()

DATA

…and all work is performed on CPU



In accelerated applications data is 

allocated with 
cudaMallocManaged()

CPU

DATA

GPU

CPU

Time

GPU



… where it can be accessed and 

worked on by the CPU

CPU

DATA

GPU

CPU

Time

initialize()

GPU



CPU

DATA

GPU

CPU

Time

initialize()

performWork()

GPU

… and automatically migrated to the 

GPU where parallel work can be done



CPU

DATA

GPU

CPU

Time

initialize()

performWork()

GPU

Work on the GPU is asynchronous, 

and CPU can work at the same time

cpuWork()



CPU

DATA

GPU

CPU

Time

initialize()

performWork()

s
y
n

c
h

ro
n

iz
e

GPU

CPU code can sync with the 

asynchronous GPU work, waiting for it 

to complete, with 
cudaDeviceSynchronize()

cpuWork()



CPU

DATA

GPU

CPU

Time

initialize()

performWork()

verifyWork()

s
y
n

c
h

ro
n

iz
e

GPU

… data accesses by the CPU will 

automatically be migrated

cpuWork()



CUDA Kernel Execution



GPU

cpuWork()

s
y
n

c
h

ro
n

iz
e

CPU

DATA CPU

Time

initialize() verifyWork()

performWork()GPU



performWork<<<2, 4>>>()

GPUs do work in parallel

GPU



performWork<<<2, 4>>>()

GPU work is done in a thread

GPU



performWork<<<2, 4>>>()

Many threads run in parallel

GPU



A collection of threads is a block

GPU

performWork<<<2, 4>>>()



There are many blocks

GPU

performWork<<<2, 4>>>()



A collection of blocks is a grid

GPU

performWork<<<2, 4>>>()



GPU functions are called kernels

GPU

performWork<<<2, 4>>>()



Kernels are launched with an 

execution configuration

GPU

performWork<<<2, 4>>>()



performWork<<<2, 4>>>()

The execution configuration defines 

the number of blocks in the grid

GPU



performWork<<<2, 4>>>()

… as well as the number of threads in 

each block

GPU



performWork<<<2, 4>>>()

GPU

Every block in the grid contains the 

same number of threads



CUDA-Provided Thread Hierarchy Variables



performWork<<<2, 4>>>()

Inside kernels definitions, CUDA-

provided variables describe its 

executing thread, block, and grid

GPU



gridDim.x is the number of blocks in 

the grid, in this case 2

GPU

performWork<<<2, 4>>>()

2



blockIdx.x is the index of the 

current block within the grid, in this 
case 0

GPU

performWork<<<2, 4>>>()

0 1



blockIdx.x is the index of the 

current block within the grid, in this 
case 1

GPU

performWork<<<2, 4>>>()

0 1



performWork<<<2, 4>>>()

Inside a kernel blockDim.x describes 

the number of threads in a block. In 
this case 4

GPU

4



performWork<<<2, 4>>>()

All blocks in a grid contain the same 
number of threads

GPU

4 4



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 0

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 1

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 2

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 3

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 0

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 1

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 2

GPU

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Inside a kernel threadIdx.x 

describes the index of the thread within 
a block. In this case 3

GPU

0 1 2 3 0 1 2 3



Coordinating Parallel Threads



cpuWork()

s
y
n

c
h

ro
n

iz
e

CPU

CPU

Time

initialize() verifyWork()

performWork()

GPUDATA

GPU



performWork<<<2, 4>>>()

Assume data is in a 0 indexed vector

GPU

DATA
GPUGPU



performWork<<<2, 4>>>()

Assume data is in a 0 indexed vector

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

Somehow, each thread must be 

mapped to work on an element in the 

vector



performWork<<<2, 4>>>()

Recall that each thread has access to 
the size of its block via blockDim.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4



performWork<<<2, 4>>>()

…and the index of its block within the 
grid via blockIdx.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

0 1



performWork<<<2, 4>>>()

…and its own index within its block via 
threadIdx.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

0 1

0 1 2 3 0 1 2 3



performWork<<<2, 4>>>()

Using these variables, the formula 
threadIdx.x + blockIdx.x * 

blockDim.x will map each thread to 

one element in the vector

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 0 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 0 4

dataIndex

0



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 0 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 0 4

dataIndex

1



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 0 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 0 4

dataIndex

2



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 0 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 0 4

dataIndex

3



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex

4



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex

5



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex

6



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 1 4

dataIndex

?



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 1 4

dataIndex

7



Grid Size Work Amount Mismatch



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

In previous scenarios, the number of 

threads in the grid matched the 

number of elements exactly



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

What if there are more threads than 

work to be done?



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Attempting to access non-existent 

elements can result in a runtime error



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Code must check that the dataIndex 

calculated by threadIdx.x + 

blockIdx.x * blockDim.x is less 

than N, the number of data elements.



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex < N = Can work

4 5 ?



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex < N = Can work

4 5 true



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex < N = Can work

5 5 ?



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex < N = Can work

5 5 false



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 ?



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 false



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 ?



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 false



Grid-Stride Loops



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

Often there are more data 

elements than there are 

threads in the grid

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

In such scenarios threads 

cannot work on only one 

element



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

… or else work is left 

undone



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

One way to address this 

programmatically is with a 

grid-stride loop



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

In a grid-stride loop, the 

thread’s first element is 

calculated as usual, with 
threadIdx.x + 

blockIdx.x * 

blockDim.x



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The thread then strides 

forward by the number of 

threads in the grid 
(blockDim.x * 

gridDim.x), in this case 
8



performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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CUDA runs as many blocks  

in parallel at once as the 

GPU hardware supports, for 
massive parallelization



















Occupancy

- GPU Occupancy

- Kernel Occupancy



NVIDIA GPUs contain 

functional units called 

Streaming 

Multiprocessors, or SMs

GPU
SM



GPU
SM

Blocks of threads are 

scheduled to run on SMs

kernel<<<24, 4>>>()



GPU
SM

kernel<<<24, 4>>>()

Depending on the number of 

SMs on a GPU, and the 

requirements of a block, 

more than one block can be 

scheduled on an SM



kernel<<<24, 4>>>()

GPU
SM

Depending on the number of 

SMs on a GPU, and the 

requirements of a block, 

more than one block can be 

scheduled on an SM



GPU
SM

kernel<<<24, 4>>>()

Grid dimensions divisible by 

the number of SMs on a 

GPU can promote full SM 

utilization



Here there are fallow SMs

kernel<<<24, 4>>>()

GPU
SM



Kernel Occupancy

Remember:

In the H100 you have 256KB  

register per multiprocessor.  

The total number of “threads X 

register per threads” cannot 

exceed this value!!

compile your code with the following nvcc option:

 --ptxas-options=-v

you will get something like this:

ptxas info : 0 bytes gmem

ptxas info : Compiling entry function 

'_Z28MyKernelhS0_S0_PK3CDRS0_Ph' for 'sm_20'

ptxas info : Function properties for 

_Z28MyKernelhS0_S0_PK3CDRS0_Ph

24 bytes stack frame, 0 bytes spill stores, 0 bytes spill 

loads

ptxas info : Used 29 registers, 80 bytes cmem[0], 4 

bytes cmem[16]



Kernal Occupancy

Occupancy =

                     

max number of active warps

max number of warps per SM

Warp = 32 threads

Block size should be a multiple of 32 (128,256 usually)!



Spreadsheet calculator

https://xmartlabs.github.io/cuda-calculator/

Or google for:

CUDA spreadsheet calculator excel

https://xmartlabs.github.io/cuda-calculator/


Glossary



Glossary
— cudaMallocManaged(): CUDA function to allocate memory accessible by both the CPU and GPUs. Memory 

allocated this way is called unified memory and is automatically migrated between the CPU and GPUs as needed.
— cudaDeviceSynchronize(): CUDA function that will cause the CPU to wait until the GPU is finished working.
— Kernel: A CUDA function executed on a GPU.
— Thread: The unit of execution for CUDA kernels.
— Block: A collection of threads.
— Grid: A collection of blocks.
— Execution context: Special arguments given to CUDA kernels when launched using the <<<…>>> syntax. It defines 

the number of blocks in the grid, as well as the number of threads in each block.
— gridDim.x: CUDA variable available inside executing kernel that gives the number of blocks in the grid
— blockDim.x: CUDA variable available inside executing kernel that gives the number of threads in the thread’s 

block
— blockIdx.x: CUDA variable available inside executing kernel that gives the index the thread’s block within the 

grid
— threadIdx.x: CUDA variable available inside executing kernel that gives the index the thread within the block
— threadIdx.x + blockIdx.x * blockDim.x: Common CUDA technique to map a thread to a data element
— Grid-stride loop: A technique for assigning a thread more than one data element to work on when there are more 

elements than the number of threads in the grid. The stride is calculated by gridDim.x * blockDim.x, which is 
the number of threads in the grid.



Questions?



How to access to the course online

1. WIFI Info: eduroam

2. Browser Recommendation: Chrome

3. websocketstest.courses.nvidia.com

4. https://learn.nvidia.com/dli-event

5. Create an Nvidia Developer Account (if you have not done yet)

6. Event code: STFC_CUDA_AMBASSADOR_MAY24

7. Work through the Introduction Section and ‘Start’ launching your first 
GPU task

http://websocketstest.courses.nvidia.com/
https://learn.nvidia.com/dli-event


Memory Management

- Type of Memories

- Unified memory behaviour

- Non-Unified memory

- cudaMemcpyAsync



Type of Memories

Device Memory:
• Global Memory
• Texture Memory
• Local Memory
• Constant Memory

On Chip Memory:
• Shared Memory (L1 Cache)
• Registers

DRAM



Device Memory
Memory Location Access Scope Lifetime CUDA qualifier

Global DRAM RW All threads and host Application cudaMalloc

cudaMallocManaged

cudaMallocHost

Local DRAM RW 1 thread Thread

Constant DRAM R All threads and host Application __constant__

Texture DRAM R All threads and host Application texture

- Global memory is the largest memory on the GPU

- Local memory are local registers spilled into the global memory

- Constant memory is useful to store constant read in values (ex. g, c, R, etc.)

- Texture memory allows interpolation on 2D constant matrix values (ex. PVT table)



On chip Memory
Memory Location Access Scope Lifetime CUDA qualifier

Register On chip RW 1 thread Thread

Shared On chip RW All threads in a block Block __shared__

- Registers per thread can be found at compile time  

- Shared memory can enhance performance when locality is high



Unified Memory (2014)
Before CUDA 6            After CUDA 6

Simplifies code writing

Applies to Global 

Memory only!



Grace-Hopper Unified Memory (2022)

Careful!! This concept is NOT the unified memory 

referred here!

In CUDA:

-gpu=unified

-gpu=unified (implies managed)
https://developer.nvidia.com/blog/uni

fied-memory-cuda-beginners/

In OpenACC

-ta=tesla:managed



New unified memory (I)



New unified memory (II)



New unified memory (III)



Unified Memory Behavior



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

… data accesses by the CPU will 

automatically be migrated

When UM is allocated, it may not be 

resident initially on the CPU or the 

GPU

?



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

When some work asks for the memory 

for the first time, a page fault will 

occur

init()

?



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

The page fault will trigger the migration 

of the demanded memory



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the 

memory is requested somewhere in 

the system where it is not resident

?
work<<<>>>()



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the 

memory is requested somewhere in 

the system where it is not resident

work<<<>>>()



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

work<<<>>>()

If it is known that the memory will be 

accessed somewhere it is not resident, 

asynchronous prefetching can be used

cudaMemPrefetchAsync(cpu)



CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

work<<<>>>()

This moves the memory in larger 

batches, and prevents page faulting

cudaMemPrefetchAsync(cpu) check()



Non-Unified Memory



CPU

DATA

GPU

CPU

Time

cudaMalloc()

GPU

Memory can be allocated directly to 

the GPU with `cudaMalloc`



CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

Memory can be allocated directly to 

the host with `cudaMallocHost`



CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cudaMemcpy(HtoD)

Memory allocated in either of these 

ways can be copied to other locations 

in the system with `cudaMemCpy`



CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cudaMemcpy(HtoD)

Copying leaves 2 copies in of in the 

system



cudaMemcpyAsync



CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cudaMemcpyAsync(HtoD)

`cudaMemcpyAsync` can 

asynchronously transfer memory over 

a non-default stream
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GPU
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Time

cudaMallocHost()

GPU

cpy

This can allow the overlapping 

memory copies and computation



CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy

work

This can allow the overlapping 

memory copies and computation
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Time
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work work

This can allow the overlapping 

memory copies and computation
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Time
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cpy cpy cpy

work work work

This can allow the overlapping 

memory copies and computation



CPU

DATA

GPU

CPU

Time

cudaMallocHost()

GPU

cpy cpy cpy cpy

work work work work

This can allow the overlapping 

memory copies and computation



CUDA streams

- Default stream

- Concurrent streams



Default Stream



A stream is a series of instructions, 

and CUDA has a default stream

Time

DEFAULT STREAM



By default, CUDA kernels run in the 

default stream

Time

kernel 1

DEFAULT STREAM



In any stream, including the default, an 

instruction in it (here a kernel launch) 

must complete before the next can 

begin

Time

kernel 1 kernel 2

DEFAULT STREAM



Time

kernel 1 kernel 2 kernel 3 kernel 4 kernel 5

DEFAULT STREAM

In any stream, including the default, an 

instruction in it (here a kernel launch) 

must complete before the next can 

begin



Concurrent streams



Non-default streams can also be 

created for kernel execution

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1



Non-default streams can also be 

created for kernel execution

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2



Kernels within any single stream must 

execute in order

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2



However, kernels in different, non-

default streams, can interact 

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3



However, kernels in different, non-

default streams, can interact 

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4



However, kernels in different, non-

default streams, can interact 

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4 kernel 5



However, kernels in different, non-

default streams, can interact 

concurrently

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

kernel 3 kernel 4 kernel 5

kernel 6



The default stream is special: it blocks 

all kernels in all other streams

Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1



Time

DEFAULT STREAM

NON-DEFAULT STREAM 1

NON-DEFAULT STREAM 2

kernel 1 kernel 2

The default stream is special: it blocks 

all kernels in all other streams
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all kernels in all other streams
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The default stream is special: it blocks 

all kernels in all other streams



Time

DEFAULT STREAM
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The default stream is special: it blocks 

all kernels in all other streams



Questions?



Profiler and other tools

- NSight

- Debugger, cuda-memcheck, etc.



This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

▪ Analyze your code to determine most 
likely places needing parallelization or 
optimization.

▪ Parallelize your code by starting with the 
most time consuming parts, check for 
correctness and then analyze it again.

▪ Optimize your code to improve observed 
speed-up from parallelization.

Analyze

ParallelizeOptimize

Analyze

The deployment cycle 



Nsight Systems - Analyze 
application algorithm 
system-wide

Nsight Compute - 
Debug/optimize CUDA 
kernel

Nsight Graphics - 
Debug/optimize graphics 
workloads

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVidia tools



This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA Nsight Systems CLI provides 

▪ Simple interface to collect data

▪ Can be copied to any system and analysed later

▪ Profiles both serial and parallel code

▪ For more info enter nsys --help on the terminal

To profile a serial application with NVIDIA Nsight Systems, we use NVIDIA Tools Extension 
(NVTX) API functions in addition to collecting backtraces while sampling.

Using Command Line Interface (CLI)

Profiling via command line



This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

What is it? 

▪ A C-based Application Programming Interface (API) for annotating events

▪ Can be easily integrated to the application

▪ Can be used with NVIDIA Nsight Systems

Why? 

▪ Allows manual instrumentation of the application

▪ Allows additional information for profiling (e.g: tracing of CPU events and time ranges)

How?

▪ Import the header only C library  nvToolsExt.h

▪ Wrap the code region or a specific function with nvtxRangePush() and nvtxRangPop()

NVIDIA Tools Extension API (NVTX) library

Profiling using NVTX (I)
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#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include "laplace2d.h"
#include <nvtx3/nvToolsExt.h>

int main(int argc, char** argv)
{
    const int n = 4096;
    const int m = 4096;
    const int iter_max = 1000;

    const double tol = 1.0e-6;
    double error = 1.0;

    double *restrict A    = (double*)malloc(sizeof(double)*n*m);
    double *restrict Anew = (double*)malloc(sizeof(double)*n*m);

nvtxRangePushA("init");
    initialize(A, Anew, m, n);

nvtxRangePop();

    printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);

    double st = omp_get_wtime();
    int iter = 0;

nvtxRangePushA("while");
    while ( error > tol && iter < iter_max )
    {

nvtxRangePushA("calc");
        error = calcNext(A, Anew, m, n);

nvtxRangePop();

nvtxRangePushA("swap");
        swap(A, Anew, m, n);

nvtxRangePop();

        if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

        iter++;
    }

nvtxRangePop();

    double runtime = omp_get_wtime() - st;

    printf(" total: %f s\n", runtime);

    deallocate(A, Anew);

    return 0;
}

jacobi.c 
(starting and ending of ranges are 
highlighted with the same color) 

Open laplace-seq.qdrep with 
Nsight System GUI to view the 

timeline

“calc” region (calcNext function) takes 26.6%
“swap” region (swap function) takes 23.4% of 

total execution time

-t Selects the APIs to be traced (nvtx in this example)

--status if true, generates summary of statistics after the collection

-b Selects the backtrace method to use while sampling. The option dwarf 

uses DWARF's CFI (Call Frame Information).

--force-overwrite if true, overwrites the existing results

-o sets the output (qdrep) filename

NVTX range 
statistics

Profiling using NVTX (II) SEQUENTIAL
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#include <math.h>
#include <stdlib.h>

#define OFFSET(x, y, m) (((x)*(m)) + (y))

void initialize(double *restrict A, double *restrict Anew, int m, int n)
{
    memset(A, 0, n * m * sizeof(double));
    memset(Anew, 0, n * m * sizeof(double));

    for(int i = 0; i < m; i++){
        A[i] = 1.0;
        Anew[i] = 1.0;
    }
}

double calcNext(double *restrict A, double *restrict Anew, int m, int n)
{
    double error = 0.0;

#pragma acc parallel loop reduction(max:err)

    for( int j = 1; j < n-1; j++)
    {

#pragma acc loop
        for( int i = 1; i < m-1; i++ )
        {
            Anew[OFFSET(j, i, m)] = 0.25 * ( A[OFFSET(j, i+1, m)] + A[OFFSET(j, i-1, m)]
                                           + A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m)]);
            error = max( error, fabs(Anew[OFFSET(j, i, m)] - A[OFFSET(j, i , m)]));
        }
    }
    return error;
}
        
void swap(double *restrict A, double *restrict Anew, int m, int n)
{

#pragma acc parallel loop
    for( int j = 1; j < n-1; j++)
    {

#pragma acc loop
        for( int i = 1; i < m-1; i++ )
        {
            A[OFFSET(j, i, m)] = Anew[OFFSET(j, i, m)];    
        }
    }
}

void deallocate(double *restrict A, double *restrict Anew)
{
    free(A);
    free(Anew);
}

laplace2d.c 
(Parallelised using OpenACC parallel 

directives (pragmas highlighted) 

Open laplace-par.qdrep 
with Nsight System GUI to 

view the timeline

“calc” region (calcNext function) takes 29.2%
“swap” region (swap function) takes 18.3% of 

total execution time

NVTX range 
statistics

CUDA API 
statistics

CUDA Kernel 
statistics

CUDA 
Memory 

Operation 
statistics

Profiling using NVTX (III) PARALLEL
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Open the generated report files 
(*.qdrep) from command line in the 
Nsight Systems profiler.

File > Open

Using Nsight Systems

Profiling using Nsight



Processes 

and 

threads

CUDA and 

OpenGL API trace

Multi-GPU

Kernel and memory 

transfer activities

cuDNN and 

cuBLAS trace

Thread/core 

migration

Thread state

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)
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Other tools

If you can, do not debug via print!!!
 

You could use instead 
Visual Studio Code with Nsight

https://developer.nvidia.com/nsight-visual-

studio-code-edition



Examples

 - Porting DL_MESO to CUDA

 - DL_MESO on multi-GPU



An Hartree application:
porting DL_MESO to CUDA 



What is DPD and DL_MESO?

…coarse grain representation using beads

Vesicle Formation

Lipid Bilayer

DL_MESO: highly scalable mesoscale simulations

Molecular Simulation 39 (10) pp. 796-821, 2013

Dissipative Particle Dynamics (DPD)…
DL_MESO: software package developed by 

Michael Seaton at DL

Porting DL_MESO to GPUs



Main problem: memory access pattern

Very uncoalescent access to the memory!
particle locations are stored in a continuous order…

… x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 …

… y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 …

… z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 …

cell-linked method

thread:    …      2      3        4       5       6       7       8       9     10     11     12     13     14     15     16 …  

i = 7

particle:

Interactions in cell j for particle i: 7-6; 7-13 ; 7-16; etc.



Reorganize the cell-linked array

cell j

j-lx j-lx+1 … j-1 j j+1 … j+lx

x16 x10 x2 x7 x30 x25

y16 y10 y2 y7 y30 y25

z16 z10 z2 z7 z30 z25

x29 x19 x4 x6 x23 x11

y29 y19 y4 y6 y23 y11

z29 z19 z4 z6 z23 z11

x18 x14 x17 x13 x22 x12

y18 y14 y17 y13 y22 y12

z18 z14 z17 z13 z22 z12

c
o

a
le

s
c

e
n

t!

- saving a N = 6*(maxNpc-1) of 

uncoalescent accesses per time step 

per thread!

- 6 because 3 positions and 3 velocities

- (maxNPc = max numer of particles per 

cell)

thread

cells locations are stored in a continuous order…

thread j     access to j-lx     location

thread j+1 access to j-lx+1 location

coalescent!
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Million of particles

A100 vs Intel 6 cores

V100 vs Intel 6 cores

A100 vs AMD 24 cores

V100 vs AMD 24 cores

Speedup on single GPU

Speedup on GPU vs:

  - AMD EPYC 7402 (Rome) 24 cores

  - Intel Xeon(R) W-2133 CPU @ 3.60GHz  6 cores

Test case: large mixture 

with constant the ratio 

particles/volume = 4

88% memory 

used!

Castagna et al. “Towards Extreme Scale Dissipative Particle Dynamics Simulations using

Multiple GPGPUs” Comput. Physi. Comm. (2020)



GPU 0 GPU 1

GPU 2 GPU 3

Multi GPU version

in 3D you have

26 GPUs/GPU!!



Overlap computation with communication

Compute forces 

between particles

For internal cells

swap in x

swap in y

swap in z

Compute 

boundary cell 

forces between 

particles

Ghost cells       External Cells 

internal cells

CUDA 

stream 1

CUDA stream 2



Scaling on different supercomputers

Animation Water Drop formation on 8 GPUs showing the 

impact of load balancing routine ALL

(ALL is from Julich Supercomputer Centre)

Adding Load Balance

Largest simulation: 14 billion 

particles!

D. Di Giusto and J. Castagna et al. “Scalable algorithm for many-body Dissipative

Particle Dynamics using multiple General Purpose Graphic Processing Units” 

Comput. Physi. Comm. (2022)

Strong scaling: 4096 GPUs (Piz Daint)

proper overlap computation-communication 

has a strong impact on scaling!



Resume

- DL_MESO has been ported to single and multi-GPU 

nNVidia GPUs using CUDA language

- Good scaling up to 4096 GPU

- We can now run very large DPD simulations (14 billions)

- Load balance allows to run simulations without out of 

memory on the GPU, as well as save computational time

- 2 publications on journal paper (CPC) 



Questions?
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