

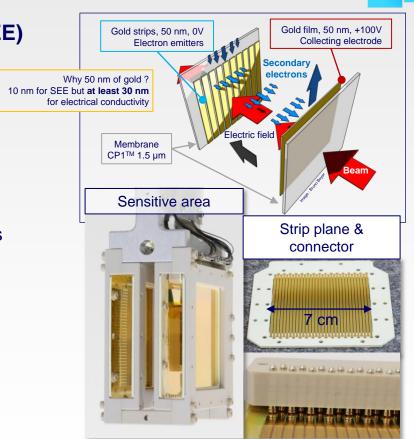
PEPITES for Beams From Laser-Plasma Acceleration ?

TRF/LhARA Collaboration Meeting #5 Imperial College, London, 26th April 2024,

Marc Verderi, Laboratoire Leprince-Ringuet, Ecole polytechnique, For the PEPITES-UltraFlash Team

Overview

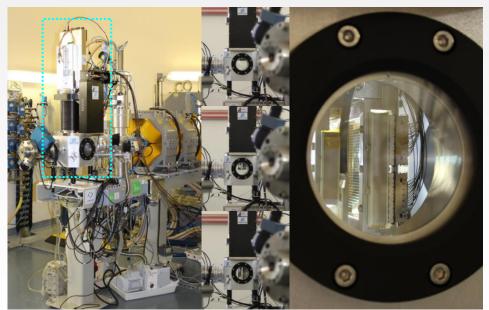
- PEPITES & related projects
- PEPITES-UltraFash : PEPITES vs Laser-Plasma Beams

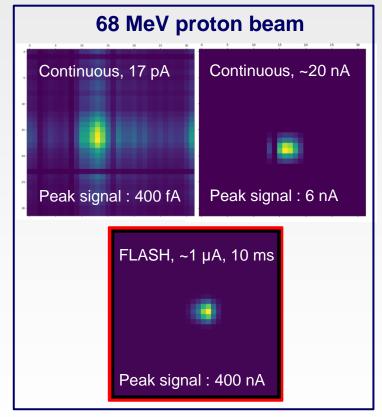

PEPITES & related projects

PEPITES in a Nutshell

7

• Ultra-thin Secondary Electron Emission (SEE) beam profiler:


- Assets of SEE as signal:
 - Tiny amount of material needed (~10 nm)
 - → Very thin sensitive area possible
 - Very linear at least up to O(A) beams
 - → Wistands conventional and FLASH irradiations
- Secondary electron energy low (O(eV))
 - Must operate in vacuum
 - → suited for beam monitors inside beam line
- Sensitive Area built using « Thin Film » techniques
 - Versatiles techniques → many variants possible
- Current version:
 - 10 µm WET
 - Low noise & high range read-out electronic
 - For continuous current beams
 - Designed by our CEA partner
 - 2 x 32 channels (X & Y beam sampling)

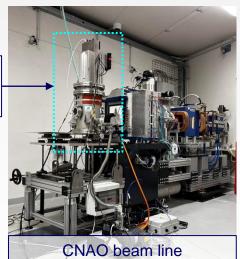


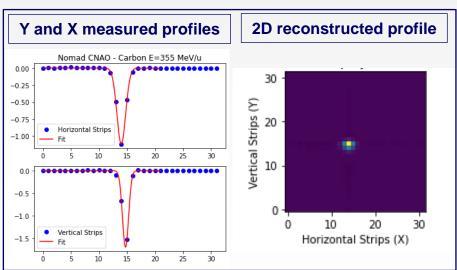
PEPITES @ ARRONAX (St Herblain/Nantes, France)

7

- Installed on May 2022 (ANR-17-CE31-0015)
 - Provides feed-back on "daily" usage
- Used 80% of time for FLASH!
 - While initially designed for continuous beams...

PEPITES @ CNAO

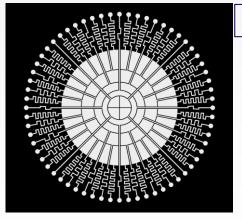

CNACO Centro Nazionali di Adriberapia Oroshigira


Centro Nazionale di Adroterapia Oncologica (Pavia, Italy)

- Project started in 2023, subject to a specific CNRS CNAO agreement
- CNAO's need: beam monitor 6.5 m from the patient used during therapeutic irradiation → very thin monitor needed!
- First test beam in November 2023, with "PEPITES NOMAD", carbon ion beams:

2023.11

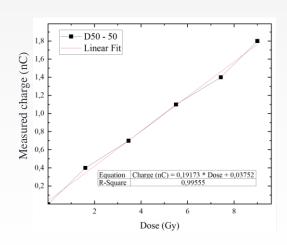
PEPITES NOMAD (copy of ARRONAX PEPITES)



Options for Thinner Monitor

Geometry	CP1 [™] (1.5 μm) membranes Cost : moderate	LuxFilm™ (0.1 µm) membranes Cost : +++
2 strip planes + 2 anodes planes	~10 µm	~2.5 µm
2 strip planes + 2 off axis anodes	~5 µm	~1.25 μm
2D pattern + off axis anode	~2.5 µm	~0.63 µm

2D pattern


Third variant, under patent process...

So, no details here!

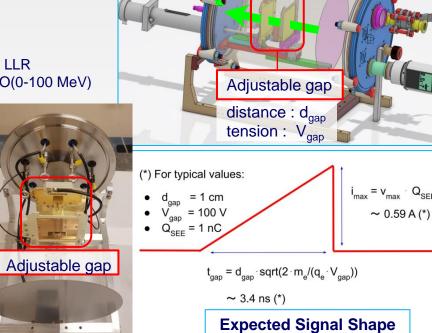
- Simple portable system to measure both conventional and FLASH beam intensities
- Proof of principle obtained beginning of April!
 - Using an electron-flash machine @ Institut Curie, Orsay, France
 - 7 MeV e⁻, O(nC), pulses 1 5 μs

2024.04

It works!;)

PEPITES-UltraFash: PEPITES vs Laser-Plasma Beams PUFF: PEPITES for UltraFlash Facilities

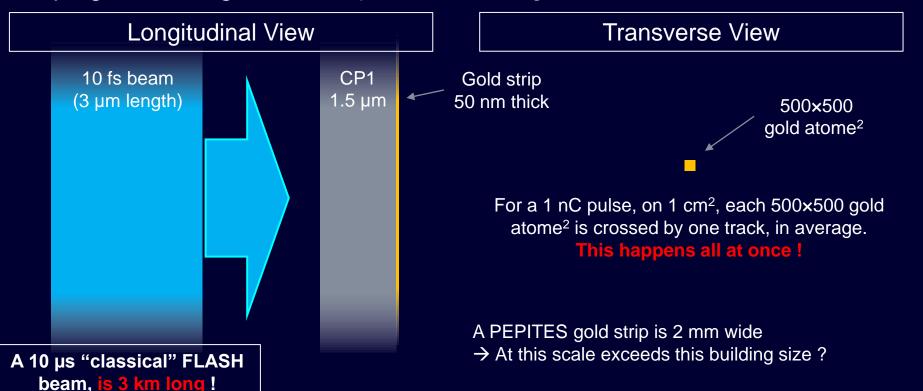
PEPITES & Laser-Plasma Beams?


e beam

creates charge

Q_{SFF} in gap

7


- SEE withstands "classical" FLASH beams
- What about "UltraFlash" ones ?
- Creation of project PEPITES-UltraFlash
 - Supported by French MITI
- Joint LLR LOA project
 - LOA = Laboratoire d'Optique Appliquée, next to LLR
 - LOA operates e⁻ beam, laser-plasma accelerated, O(0-100 MeV)
 - Has several rooms with beams
- Driving work items:
 - Observe the signal
 - Assess its linearity/non-linearity
- Dedicated apparatus PUFF
 - Two parallel planes, with variable distance
 - To verify signal understanding
 - 1st version to be mounted on LOA chamber
 - 2nd version, standalone
- Main limitation: access to beam!

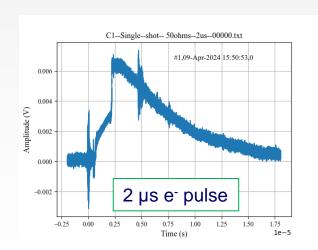
To Scale Drawing!

Hoping not having messed-up orders of magnitudes...

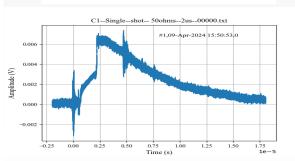
Test Beam Attempts with LPA

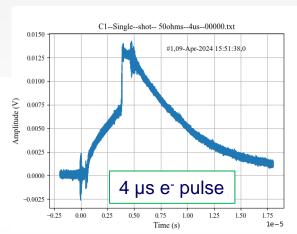
2nd Attempt, 2 w. March-April 2024 LOA chamber in "SHERIL" Room PEPITES chamber, decoupled from LOA chamber (closed)

→ Drowned out by EMP background


→ Line under development, no usable beam...

Short Test Beam @ Institut Curie, Orsay




Electron-flash machine, April 2024

- On the same day got its proof of principle, we took few minutes (in the rush) to see if PUFF is indeed alive
 - It is!
- Signals not to be taken at face...

Next Steps

- Plan new test beam @ Institut Curie, Orsay
 - To understand PUFF signal, with "classical" FLASH beams
 - And to measure SEE rate @ 7 MeV, from e- beam
 - Need a reference, to be usable also for UltraFlash
 - Candidate date in May

Go back to LOA for UltraFlash beams

- Possibly this fall
- Re-hunt for the signal
- If convincing, measure SEE rate, and compare with "classical" one
- If very lucky, use usual PEPITES, in charge integrated mode, to profile a beam.

Thank you!