Overview on the Dosimetry

MILAAN PATEL

PDRA, University of Liverpool

25th April 2024

Laser-hybrid Accelerator for Radiobiological Applications

- LhARA dose range
- Dosimetry for FLASH hadron beams
- Charged based dosimeter
- Chemical Dosimeters
- Passive Luminescent dosimeters
- Active Luminescent dosimeters
- Calorimeters
- Gas jet profile monitor
- Summary

LhARA targets FLASH modality.

 Instrument review is focussed on the FLASH dose rates

Critical parameters for selecting dosimeter:

- Per pulse/bunch dose information.
- Dose profile information.
- Online- (within 100 ms.)

Dosimetry is categorised by their operating principle.

		Proton		Carbon	
Kinetic Energy	12	15	127	33.4	MeV/u
Bunch Length	7	7	41.5	75.2	ns
Dose per pulse	7.1	12.8	15.6	73.0	Gy
Instantaneous dose rate	1.0×10^9	1.8×10^9	3.8×10^8	$9.7 imes 10^8$	Gy/s
Average Dose rate	71	128	156	730	Gy/s
(10 Hz)					
Beam profile	5	square: 3.5 c	LE in-vitro		
Beam profile	ϕ 1-3 c	m uniform d	HE in-vitro $+$ in-vivo		

UHD pulse project (Physica Medica 80 (2020) 134–150)

2

25/04/2024

LhARA design baseline Report CCAP-TN-11 Issue 1

Dosimetry for FLASH hadron beams

Year Radiation Type	Machine	Energy (MeV)	Avg. Dose Rate (Gy/s)	Dose per Pulse (Gy/pulse)	Pulse Repeti- tion Rate (Hz)	Field Size	Dosimetry Method	
2018 Proton [3]	IBA Isochronous Cyclotron (France)	138-198	40	N/A	106.14 MHz (Quasi- continuous)	$1.2~{\rm cm}$ @ 90%	Cylindrical IC, EBT3 RCF	Beam profile: EBT films
2019 Proton [4]	Varian Isochronous Cyclotron (USA)	245	40	N/A	Quasi- continuous	$1~{\rm by}~3~{\rm cm}$	Not Provided	Current : Far. Cup
2020 Proton [5]	IBA Isochronous Cyclotron (USA)	230	80	N/A	106.14 MHz (Quasi- continuous)	$2 \mathrm{~cm} \mathrm{FWHM}$	Plane Parallel IC	
2020 Proton [6]	Mevion Synchrocy- clotron (USA)	70	100-200	$\begin{array}{c} 0.16\text{-}0.32 \\ (8\text{-}16{\times}10^3 \\ \mathrm{Gy/s}) \end{array}$	648	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Plane Parallel IC, FC, MC Simulation, RCF	
2020 Proton [7]	IBA Isochronous Cyclotron (USA)	227.5	130	N/A	106 MHz (Quasi- continuous)	1.6 by 1.2 cm El- lipse	Plane Parallel IC, FC, MC Simulation, EBT3 RCF	
2021 Proton [8]	Mevion Synchrocy- clotron (USA)	60	120-160	0.22 (9.3×10 ³ Gy/s inst.)	750	Dia. 1.1 cm FWHM (5mm @ 90% isodose)	IC, FC, MC Simulation, EBT-XD RCF	
2021 Proton [9]	Research Isochronous Cy- clotron (Germany)	68	75	N/A	20 MHz	Dia. 1.3 cm	IC, RC	
2021 Proton [10]	COMET Isochronous Cy- clotron (Switzer- land)	170-250	9000 (for a single spot)	N/A	72.85 MHz	2.3-5 mm (16 by 1.2 cm by scan- ning)	\mathbf{FC}	
2021 Helium Ion [11] 2021 Carbon Ion [12]	Synchrotron (Ger- many) Synchrotron (Ger- many)	145.74 MeV/u 280 MeV/u	185 70	N/A N/A	Quasi- continuous Quasi- continuous	1 cm^2 (by spot scanning) 1 cm^2 (by spot scanning)	Parallel-plate IC IC, EBT3 RCF	Data generated from F Romano et al., Med Phys. 2022;49:4912– 4932.
L 1	57	/				3/		

ITRF/LhARA Collaboration Meeting - Dosimetry Overview Milaan Patel

25/04/2024

Operate by creating ion pairs in known volume and counting them in terms of current to estimated dose

Ionization chambers

- Generates electron ion pairs in enclosed gas which are collected using electrodes
- Considered best for conventional dosimetry
- µs Resolution (ion-drift velocity)
- Ion recombination >300Gy/s

Direct current measurement (Faraday cup)

- Beam current measurement
- ns response (electronics)
- Suppression against sputtering
- No beam profile information.

Solid state detectors

(Diodes, MosFets, SST, Diamond)

- Ion-holes pairs are created that constitutes the current.
- Good spatial resolution;
- Real-time by skin mounted
- Recombination Generation (RG) centres saturates at high dose rate
- Radiation damage
- Profiling requires spot scanning/array

Ashraf MR, Front. Phys. 8:328, 2020, doi: 10.3389/fphy.2020.00328

PTW microDiamond

ITRF/LhARA Collaboration Meeting - Dosimetry Overview Milaan Patel

25/04/2024

Chemical Dosimeters

Chemical (sensitive) medium undergoes structural changes upon irradiation.

Frikie dosimeter

- water-based solution
- Irradiation changes optical density of the material (ferrous-ferric ions)
- Read out using spectrophotometer
- Temperature dependence,
- Max absorbed dose is limited by Oxygen that can be used up (400 Gy)
- At high dose rate decrease in sensitivity at due to ion diffusion and instability of radiation induced species

Marrale M et al.,2021, 7(2):74. https://doi.org/10.3390/gels7020074

Alanine dosimeter

- Pellet forms (5 mm dia. 2.5 mm thick), binder (paraffin wax)
- Alanine forms stable radical whose concentration is proportional to dose.
- Linear response upto 1.5×10⁵Gy/s (e-beam)
- Accuracy 3% upto 1 kGy/s
- Demonstrated dose rate independence upto 10¹⁰ Gy/s (e-beam)
- Offline readout (electron paramagnetic resonance (EPR) spectrometer)
- Readout device are not small and cheap.
- Accuracy 0.1% (depends spectrometer and environmental condition)

Sharpe, P. H. G. and J. P. Sephton. "Alanine dosimetry at NPL - the development of a mailed reference dosimetry service at radiotherapy dose levels." (1998).

25/04/2024

Chemical Dosimeters (cont..)

Radiographic films

- Polymeric films darken during irradiation due to polymerization.
- Grafchromic (EBT3,EBT-XD) and Orthochromic (OC-1)
- Stackable for 3D dose distribution., 3D gels

Electron beam (20MeV, 5ps)

• Dose rate independent up to 15×10^9 Gy/s.

Proton beam (UHDR , 68 MeV, 7500 Gy/s)

- Under-response: >10-35 MeV, >10Gy.
- Overestimate by 11% (40Gy), >20% at saturation
- Diffusion of irradiated species: dose distribution differs
- Real-time readout complication: pre-exposure polarization.
- Post irradiation stability

Villoing et al. Med Phy, 2022, 49(4), 2732-2745. doi: 10.1002/mp.15526.

25/04/2024

Adding impurity to certain crystals creates metastable states. Irradiation traps ions depending on the dose received. External stimulation emits light to estimate dose.

TLDs, OSLDs, RPL (persistence , UV excitation)

- TLDs (Lif:Mg,Ti / Lif:Mg,Cu,P) are commonly used.
- Principally passive; require readout.
- Accuracy strongly depended on the readout process

Ashraf et. al., Front. Phys. 8:328, 2020, doi: 10.3389/fphy.2020.00328

ITRF/LhARA Collaboration Meeting - Dosimetry Overview Milaan Patel

25/04/2024

7

UASAR

Passive Luminescent Dosimeter (Conti.)

- TLD (E-beam, 20MeV 5ps)
 - dose-rate independence up 4×10⁹ Gy/s within 2%
 - Dose accuracy of 3% up to 1050 Gy/s.
- TLD (P-beam, 10-200MeV)
 - Dose profile measurement accuracy 12%
 - Dose rate independent up to 4500 Gy/s

S Motta et al 2023 Phys. Med. Biol. 68 045017

M. Sądel, et al. Radiation Measurements, 82, 2015, 8-13, https://doi.org/10.1016/j.radmeas.2015.07.009.

25/04/2024

Active Luminescence Dosimeters

Detectors which emits photons upon irradiation without external stimulation.

Scintillators

- Scintillation process involves: Conversion transport and Luminescence
- **Organic**: aromatic hydrocompound: excellent tissue equivalence, can be miniaturized.
- Organic PSD: organic molecules in solvent, water eq., energy independence
- **Inorganic:** crystalline materials doped with impurities. High Z materials, non-tissue equivalent.
- Emission occurs in nano second time scale can be real time,
- Ideal beam profiling monitoring and dose monitoring.
- 3D liquid scintillator for 3D profile.
- Excellent dose linearity 10²-10⁷ Gray/s.
- Precision +-2%
- Needs to be placed in the beam path

Ashraf et. al., Front. Phys. 8:328, 2020, doi: 10.3389/fphy.2020.00328

25/04/2024

9

UASAR

Active Luminescence Dosimeters (conti.)

UASAR

Cherenkov / Cerenkov

- Emitted when a charged particle moves faster than light through a material. (bluish light)
- Direct information of the dose without any active media.
- Threshold: 264 keV (e), 500MeV (p)

- Possible: using secondary electron emission?
- Observed for photons

25/04/2024

Calorimeters

Dose estimated by measurement the heat generated in a medium during irradiation

- Fundamentally independent on the dose rate, energy
- Accuracy depends on the ability to measure minimum temperature rise. (3%)
- Considered best for reference dosimeters in FLASH
- Graphite calorimeters are being considered as primary standard for FLASH (e-beam)
- Principally offline

Small-body portable graphite calorimeter (SPGC) , 62 MeV clinical proton beam, 1.9-2.5% @ 0.25 Gy/s

Aerrow: Graphite probe calorimeter (GPC) 1% @ 76 MV photons,

NPL Primary Standard Proton Calorimeter (PSPC) Accuracy <3% @ 250 MeV (Probeam,USA)

ITRF/LhARA Collaboration Meeting - Dosimetry Overview Milaan Patel

25/04/2024

Gas-curtain based profile monitor

Beam incident on gas curtain creates ionizations/excitations

What camera sees

- Ionization cross-sections is more than excitation. (4π collection)
- **Time resolution**: travel time of charge (~10 μs), detector (10ms)
- Beam current(dose rate) principally independent
- Energy dependency follows ionization cross-section trend
- Challenges:
 - Ion extraction and detection maintaining their separation.
 - Sensitivity

25/04/2024

Summary

Selling point (limitations)	Dosimeter	Absolute Dosimetry	FLASH dosimetry	Dose measurement	Spatial resolution	Response time	beam perturbation	Dose-rate dependence	Accuracy	Characteristics
Gold standard → for conventional (non-linarity in FLASH modality) Gold standard → for beam profiling (invasive, offline)	lonization chamber	Yes	<mark>p</mark> ,e	1D, 2D scanning	few mm	10-200us	Yes	significant > 1 Gy/pulse >80Gy/s	1% 80Gy/s, 15% at 1050Gy/s , 1% with recombination correction	lon recombination at High dose rates
	Diodes	N	C, ph	1D, 2D scanning	sub mm	ms	mask	Independent at 0.2 Gy/s	2-5%	Radiation damage at high dose rate, over- response at low dose rate
	MOSFETs	N	ph	1D, 2D scanning	1mm	ms	mask			Temperature dependence
	Diamod Detectors		p,ph,e	1D	1 mm	us	mask	> 1mGy/pulse, 50 mg/s	1% <1mGy/s, 9% for >50 mGy/s	
	Faraday cup	N							up to 1%–2%	Measures total collected charge
	Frikie	D	ph,e	1D	2mm	ns	Yes			High dose rate causes diffusion of radiation induced species.
	Alanine	D	ph,e	1D	5mm	Passive	Yes	independent up to 3^10	<3% upto 1050 Gy/s	Decreased accuracy for doses less than 10 Gy (minimum 2 Gy)
	Radiochromic /Radiographic films	Yes	<mark>p</mark> , C, e	2D	<1um	Passive	partially transparent	independent up to 1.5^10	5-20% @ bragg peak , 25-35% for C	Underresponse in high LET field
	Polymetgels			3D	1 um	Passive	Completely			Complex measurement and Complicated readout machinery
	TLD	D	ph, e	1D, 2D array/scan	1 mm	Passive	mask	independent up to ~10^8	2% for ~10^9 Gy/s with corrections, ~15% without corrections	Energy dependence, time consuming, LET dependence
	OSLD	D	ph	1D, 2D array/scan	1 mm	Passive	mask	Independent up to ~10^9 Gy/s)	3-5%	Energy dependence, time consuming, LET dependence
Profile (invasive) →	Scintillators	D	e, <mark>p</mark>	1D, 2D-film	1 mm	ns	partially transparent	Independent up to ~10^7 Gy/s	2% up to ~10^7 Gy/s	Real-time readout, water-equivalence, energy independence, dose-linearity and resistance to radiation damage,
Calibration standard for FLASH modality (invasive, offline) →	Chernkov	D(e)	e, Ph	1D, 2D, 3D	1 mm	ps	partially transparent (energy)			Only applied to electron or Photon beams
	Caloriemeters	Yes	<mark>p</mark> , e, ph				Completely	principally independent	<1%	Bulky, not easy to use, correction factors, time consuming
Minimally invasive → (weak signal, non-abs)	Gass jet (in development)	Potentially	r <mark>p, C</mark>	2D (profile)	sub-mm		mostly transperent	principally independent	NA	Principally dose-rate independent, transparent to beam

Jet Dese

ITRF/LhARA Collaboration Meeting - Dosimetry Overview Milaan Patel

25/04/2024

Thank you

