

WP2: Update on the simulations of the LhARA proton source

<u>Titus Dascalu</u>

Physics Department, Lancaster University

ITRF/LhARA Collaboration Meeting | April 26th, 2024

Acknowledgements

Nicholas Dover (Imperial College London)

Ross Gray (University of Strathclyde)

Charlotte Palmer (Queen's University Belfast)

Elisabetta Boella (Lancaster University)

Simulations performed on SuperMUC-NG (LRZ, Germany) under PRACE allocation and ARCHER2 (EPCC, UK) under EPSRC allocation

TODAY

Outline

Since the LhARA 12 month review we investigated the effect of:

- ✤ laser spot-size
- density of the hydrogen contaminant layer
- ✤ laser angle of incidence
- realistic preplasma density (modelled using laser contrast measurements at SCAPA)
- optimisation routines in finding optimal target density profiles

... on proton acceleration from a solid target via TNSA using:

- In Full 3-D Particle-In-Cell (PIC) simulations
- ✤ 2-D PIC parameter scans
- hydrodynamic simulations

Modelling expected and optimal SCAPA conditions based on previous 3-D PIC simulations

Laser "prepulse" modelled using hydrodynamic code \rightarrow resulting "preplasma" density fed into the PIC simulations

Laser "prepulse" modelled using hydrodynamic code \rightarrow resulting "preplasma" boosts proton energies

• Different preplasma profiles can lead to similar boost in the proton cutoff energy

T. Dascalu | ITRF/LhARA collaboration meeting | April 26th, 2024

2-D simulations predict an optimal angle of incidence of the laser \rightarrow increase in the proton cutoff energy and particle flux

- PIC scan with realistic preplasma density profile (from hydrodynamic simulation)
 - 2-D because of the comparatively larger simulation domains required

Near-critical density region of the preplasma generates most of the overall proton energy boost

 $I_0 = 1 \times 10^{21} \text{ W/cm}^{-2}$, $a_0 = 21.6$, 6 µm Al target

Searching for the optimal pre-plasma density profile at normal laser incidence (2)

- 2-D PIC scan + evolutionary algorithm
 - Differential Evolution (due to relative simplicity)
 - 60 members in each generation
 - start with random generation

At normal laser incidence, near-critical foam-like pre-plasma provides the largest proton energy boost in 2-D PIC simulations

- Optimal pre-plasma density found by DE algorithm: foam-like continuous layer with
 - density $\approx 1 n_c$
 - scale-length $\sim \infty$
- Difficult to achieve experimentally at high repetition

Searching for the optimal pre-plasma density profile at oblique laser incidence (30°)

Preliminary work

- Optimal pre-plasma density search implemented using
 - 2-D PIC scan
 - Bayesian optimisation
- Larger simulation domain required to mitigate edge fields and to fit rotated target

T. Dascalu | ITRF/LhARA collaboration meeting | April 26th, 2024

- We explored via 2-D scans and full 3-D Particle-In-Cell simulations the interaction of the SCAPA laser with Aluminium foils.
- We linked different regions and scale-lengths of the pre-plasma with lower or higher boost in the maximum energy of the protons generated via TNSA.
- ✤ 2-D PIC simulations predict higher proton energies for lasers incident at angles just below 30°.
- We found a potentially optimal pre-plasma density profile that may increase the proton cut-off energy for fixed laser parameters and target thickness.
- We implemented two optimisation schemes that we plan to use in finding suitable laser contrast curves (and/or prepulse shape and timing) that could generate optimal preplasma density profiles

Backup

Smaller laser spot size leads to less divergent TNSA protons

- 6 μ m thick Al³⁺ target (70 n_c),
- pre-plasma scale-length $\sim 0.5 \, \mu m$

- TNSA models
 - Brenner et. al. (modified Mora)
 - $\eta = 0.5$, T_e from sim.
 - Dover et. al. (modified Schriber)
 - $\eta = 0.5$, $\theta_e = 10^\circ$

Smaller laser spot size leads to less divergent TNSA protons

- $6 \mu m$ thick Al³⁺ target (70 n_c),
- pre-plasma scale-length ${\sim}0.5\,\mu m$

energy	J	3.75	3.75	3.75	3.75	3.75	3.75
on taget	J	0.9375	0.9375	9.38E-01	0.9375	0.9375	0.9375
duration	fs	25	25	25	25	25	25
power	TW	35.25	35.25	35.25	35.25	35.25	35.25
w0	micron	1	1.25	1.5	1.58	1.75	2
I	W/cm^2	2.24E+21	1.44E+21	9.97E+20	9.00E+20	7.33E+20	5.61E+20
lambda	micron	0.8	0.8	0.8	0.8	0.8	0.8
a0		32.4	25.92	21.6	20.52	18.52	16.2
				Data already present			
		completed	completed	Baseline simulation		completed	

H+ density on back of the target plays a role in the proton cutoff energy and energy spectrum

- 6 μ m thick Al³⁺ target (70 n_c), pre-plasma scale-length 0.08 μ m
- 31.8 nm thick H⁺ contaminant layer
- H⁺ density needs to be tuned for quantitative comparison to experiments

Searching for the optimal pre-plasma density profile at oblique laser incidence (30°)

- Optimal pre-plasma density search implemented using
 - 2-D PIC scan
 - Bayesian optimisation
- Larger simulation domain required to mitigate edge fields and to fit rotated target

Contribution of different regions of the pre-plasma to the proton acceleration

•
$$I_0 = 1 \times 10^{21} \text{ W/cm}^{-2}$$
, $a_0 = 21.6$

Contribution of different regions of the pre-plasma to the proton acceleration

•
$$I_0 = 1 \times 10^{21} \,\mathrm{W/cm^{-2}}, a_0 = 21.6$$

From: The role of standing wave in the generation of hot electrons by femtosecond laser beams incident on dense ionized target

Phys. Plasmas. 2021;28(2). doi:10.1063/5.0031555

DOI: 10.1103/PhysRevE.85.036405

FIG. 4. (Color online) (a) Proton energy spectra at t = 166 fs considering a laser with $a_0 = 10$ and foam layer with density $n_f = n_c$. (b) Maximum proton energy evolution with respect to time for different foam thicknesses ($a_0 = 10$, $n_f = n_c$). In both panels the foam thickness is written next to the corresponding line (0: no foam; 1: $l_f = 1 \ \mu$ m etc.).

