LhARA Collaboration Meeting

Source – Energy Distribution

Parameters			
Laser Power [TW]	200		
Laser Energy [J]	5		
Laser Intensity [W/cm ²]	4x10 ²⁰		
Laser Wavelength [nm]	800		
Pulse Duration [fs]	28		
Foil target thickness [nm]	400-600		

Figure 1: Normalized energy distribution of the laser-driven protons created at the LION beamline.

Source – Angular Distribution

Figure 3: Angular distribution of the laser-driven protons at the LION beamline source.

Figure 4: 2D angular distribution of 100000 protons at the source.

LION Beamline - BDSIM

Figure 5: Side-on view of LION beamline in BDSIM.

Proton Beam

Figure 6: Spot size at the focus of the LION beamline.

Electrons at the Source

Time of Flight Distribution

SmartPhantom

Figure 13: Geant4 simulation of the SmartPhantom. Angled view (left), cross-section view (right).

Liquid Scintillator

Ultima Gold XR

Component	Name	Composition [weight %]
Solvents	di-isopropyl naphthlene (DIP)	40-60
	ethoxylated alkylphenol	20-40
	bis(2-ethylhexyl) hydrogen phosphate	2.5-10
	triethyl phosphate	2.5-10
	Sodium di-octylsulphosuccinate	2.5-10
	3,6-dimethyl-4octyne-3,6-diol	1.0-2.5
Scintillators	2,5 diphenyloxazole (PPO)	1-1.0
	1,4-bis (2-methylstyryl)-benzene (Bis-MSB)	0-1.0

Figure14: Liquid scintillator absorbance measurement. (a) Solutions (b) & (c) Results.

Energy Depositions

Figure 15: Binned energy depositions of the LION beam (1e6 protons).

50µm Kapton Acoustic Transmission

Acoustic gel

Kapton foil

Experiment 1

50µm Kapton Acoustic Transmission

SmartPhantom: Aluminium Walls

Ultrasound Transducers

Image Reconstruction

Time-Reversal Algorithm

Scintillating Fibre Planes

Figure 17: 2D reconstruction with the scintillating fibres at each station location.

Figure 18: Scintillating fibre plane detectors built in the lab.

Figure 16: Scintillating fibre plane stations (green) in the Geant4.

SmartPhantom: Current Status

Future Work

- K-Wave simulations
- Scintillating fibre detector characterization
- Liquid scintillator & scintillating fibre detectors saturation measurement
 25-26 June Birmingham
- Optimize the optical system
- Rehearsal experiments