LhARA Collaboration Meeting

Source - Energy Distribution

Parameters

Laser Power [TW]	200
Laser Energy [J]	5
Laser Intensity [W/cm²]	4×10^{20}
Laser Wavelength [nm]	800
Pulse Duration [fs]	28
Foil target thickness [nm]	$400-600$

Figure 1: Normalized energy distribution of the laser-driven protons created at the LION beamline.

Source - Angular Distribution

Figure 2: Energy dependent envelope divergence.

Figure 3: Angular distribution of the laser-driven protons at the LION beamline source.

Figure 4: 2D angular distribution of 100000 protons at the source.

LION Beamline - BDSIM

Figure 5: Side-on view of LION beamline in BDSIM.

Proton Beam

Figure 6: Spot size at the focus of the LION beamline.

Figure 7: Distribution of particles at the focus.

Figure 8: Energy spectrum of the particles at the focus.

Electrons at the Source

Figure 9: Energy distribution of the source-generated electrons.

Figure 12: Energy spectrum of the electrons at the end of the LION beamline.

SmartPhantom

Figure 13: Geant4 simulation of the SmartPhantom. Angled view (left), cross-section view (right).

Liquid Scintillator

Ultima Gold XR
$\left.\begin{array}{|c|c|c|}\hline \text { Component } & \text { Name } & \begin{array}{c}\text { Composition } \\ \text { [weight \%] }\end{array} \\ \hline & \text { di-isopropyl naphthlene (DIP) } & 40-60 \\ \hline \text { Solvents } & \begin{array}{c}\text { ethoxylated alkylphenol }\end{array} & 20-40 \\ \hline \text { bis(2-ethylhexyl) hydrogen } \\ \text { phosphate }\end{array}\right]$ 2.5-10

Figure14: Liquid scintillator absorbance measurement. (a) Solutions (b) \& (c) Results.

Energy Depositions

Figure 15: Binned energy depositions of the LION beam (1e6 protons).

Protons

Secondary particles

Background electrons

50 $\mu \mathrm{m}$ Kapton Acoustic Transmission

Experiment 1
Experiment 2

50 $\mu \mathrm{m}$ Kapton Acoustic Transmission

$$
\operatorname{loss_ dB}=20 \times \log _{10}\left(\frac{\text { average_kapton_amplitude }}{\text { average_water_amplitude }}\right)
$$

SmartPhantom: Aluminium Walls

Ultrasound Transducers

Matrix Array

Linear Array

Center Frequency	3.5 MHz
Bandwidth	60%
Elements	$1024(32 \times 32)$
Pitch	0.3 mm

Center Frequency	5.3 MHz
Bandwidth	75%
Elements	$192(192 \times 1)$
Pitch	0.23 mm

Center Frequency	1 MHz
Bandwidth	80%
Elements	1
Pitch	-

Center Frequency	$0.1-1 \mathrm{MHz}$
Bandwidth	$?$
Elements	1
Pitch	-

Image Reconstruction

Time-Reversal Algorithm

Scintillating Fibre Planes

Figure 18: Scintillating fibre plane detectors built in the lab.
Figure 16: Scintillating fibre plane stations (green) in the Geant4.

SmartPhantom: Current Status

Future Work

- K-Wave simulations
- Scintillating fibre detector characterization
- Liquid scintillator \& scintillating fibre detectors saturation measurement 25-26 June Birmingham
- Optimize the optical system
- Rehearsal experiments

