

ITRF - LhARA

General Facility Infrastructure and Integration ITRF WP2 & LhARA WP1.6

1272-pa1-wp2-prs-0008-v1.0-ITRF-18-month-design-review-WP6-infrastructure-2024-04-25

18 Month Design Review 25th April 2024

Clive Hill, UKRI-STFC-Daresbury Laboratory, On behalf of the team

LhARA Target Chamber Vacuum **Simulations**

Results

ITRF Transmission Probability Results													
	C	osine Desoprtion	Cos	N = 2 Desorption	Cos	N = 10 Desorption	CosN = 100 Desorption						
Position along vessel	Number of hits	Transmission Probability (w)	Number of hits	Transmission Probability (w)	Number of hits	Transmission Probability (w)	Number of hits	Transmission Probability (w)					
Number of gas molecules generated	2850083		4554821		2707689		14327524						
Entrance to nozzle (4 mm)	15761	5.53E-03	31061	6.82E-03	48074	1.78E-02	1701677	1.19E-01					
Exit of nozzle (5.4 mm)	2063	7.24E-04	4626	1.02E-03	9767	3.61E-03	449590	3.14E-02					
1/4 way along Gabor Lense	79	2.77E-05	184	4.04E-05	383	1.41E-04	17535	1.22E-03					
1/2 way along Gabor Lense	28	9.82E-06	55	1.21E-05	120	4.43E-05	5120	3.57E-04					
End of 1st Gabor Lense	18	6.32E-06	47	1.03E-05	79	2.92E-05	3613	2.52E-04					

Transmission Probability represents the probability of a gas molecule generated in the target chamber reaching the Gabor lens through the nozzle.

To achieve the 2 orders of magnitude pressure difference required between the target chamber and the Gabor Lens we are looking for the transmission probability to be better than 0.01 or 1E-2

side

Keith Middleman ASTeC Vacuum Solutions Group STFC Daresbury Laboratory

Low Energy Line

Low Energy Line

Low Energy Line Support Systems

Gabor lens

Low Energy Line Support Systems Example

Support Pedestal

FETS FFA - Vacuum Chamber

- Maximum stress less than 2/3 yield, i.e., yield safety factor of 1.5
- Maximum deflection < 2mm

Yield safety factor is defined as:

$$Yield \ safety \ factor = \frac{Yield \ stress}{Stress}$$

Yield safety factors are used for easier comparisons between materials. It is clearer to determine whether stresses are acceptable without having to refer back to the yield stress for each material.

	All Ribs			N	o Half Ribs		No Ribs			
	Max Deflection (mm)	Max Stress (MPa)	Max Yield/ Stress	Max Deflection (mm)	Max Stress (MPa)	Max Yield/ Stress	Max Deflection (mm)	Max Stress (MPa)	Max Yield/ Stress	
6063 T6	7.23	5.38E+02	0.48	12.71	4.28E+02	0.61	12.94	6.67E+02	0.39	
316LN	2.47	5.65E+02	0.45	4.40	4.31E+02	0.59	4.49	7.18E+02	0.35	
Ti6Al4V	4.37	5.34E+02	1.58	7.61	4.28E+02	1.98	7.75	6.59E+02	1.28	

FETS FFA – Magnet and Trim Coil Construction Assembly of Trim Coils Layer 1

FETS FFA Water Connections and Electrical Terminations

LhARA FFA Ring

Iterated Concept

Building requires increasing for FFA

