

FFA and Magnet Design

J. Pasternak

25/04/2024, LhARA CM, IC

Outline

- LhARA FFA baseline
- Variable energy FFA
- LhARA double spiral FFA candidate
- Magnet design
- Conclusions

Energy Variability using Laser Accelerated Ions

LhARA Ring Tracking

- Performed using proven stepwise tracking code (FixField)
- It takes into account fringe fields and non-linear field components
- Results show dynamical acceptances are large
- No space charge effects included yet

FFA Ring with subsystems

Parameter	unit	value
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees	48.7
thickness	cm	1
full gap	cm	3
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	1.12
magnetic length	m	0.9
deflection angle	degrees	34.38
thickness	cm	1
full gap	cm	2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	ns	320
flat top duration	ns	25
full gap	cm	3
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	Т	0.05
deflection angle	mrad	19.3
rise time	ns	110
flat top duration	ns	40
full gap	cm	2

- Injection line and, fast injection and extraction systems parameters are established
- The slow extraction option is possible – no shortstopper found (Steinberg's and Taylor's work)

Magnet Design

Half of the magnet with flat pole and distributed trim coils (from Milestone 6 report)

- Magnetic field ~R^k is generated by distributed trim coils with individual currents on the flat pole
 - Conventional room temperature combined function magnet has the gap shaped to generate the wanted field
 - Gap is closing towards the high field region, which makes fringe-field extend to be reduced towards high field region, but in FFA we need the opposite λ ~R
 - You can use field clamp, but it is already difficult with the flat pole
- Gap-shaping magnet does not allow to change k, so you cannot adjust optics
 - Variable energy operation requires different B₀
 - Different saturation levels at different B₀ may affect the optics, so you may need to adjust it
 - You may want to change the working point, for example to allow for the slow extraction
- For details of the design see Ta-Jen's talk

Magnet Design (2)

Goals for the magnet design:

- Optimise geometry (including the clamps) and currents to obtain scaling magnet for the baseline energy
 - Zero-chromaticity is important
- Investigate the behaviour (tunes as a function of energy) for different energies
 - Is it still zero-chromatic? Do we cross any resonances?
 - We may need to adjust the currents
- If the vertical tune is NOT flat we need to do something
 - We may need to break the scaling law a bit to recover zero-chromaticity
 - But you need two knobs for two tunes, so we could introduce "superperiod" powering two consecutive magnets a bit different introducing 5-fold symmetry in the ring

- LhARA at Stage 2 requires a variable energy FFA
- The cost effective, single spiral scaling FFA chosen for the baseline shows a good performance in tracking studies
- Preliminary design for the magnet has been created (see Ta-Jen's talk)
 - Key is the zero-chromaticity for different energies
- Alternative double spiral scaling lattice was proposed