Stage 1 Design

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting

25th April 2024

Outline

- Standard parameterised source
- Stage 1 status
- Stage 1 proposed accelerator updates
- Gabor lens tracking performance
- Alternative injection line design

Simulated Beam Reliability

ROYAL HOLLOWAY UNIVERSITY

- SCAPA simulations OSIRIS PIC code
 - 15 MeV **±** 100 % beam
- Distribution uncertainties
 - Excess at ~ 4 MeV unphysical
 - Absence of protons at low energies
 - Questionable reliability

Parameterised Source Distribution

- LhARALinearOptics
 - K. Long, M. Maxouti & N. Dover
 - Code for modelling LhARA beam lines
 - Also LION beamline
 - Optics, losses, particle source
- Variety of source options
 - Default: "exponential" energy spectrum with h/e cut off
 - Gaussian angular distribution, pointing $\boldsymbol{\theta}$, flat $\boldsymbol{\phi}$
- Under-sampling uncertainty as E ->
 0
 - Impact on LhARA performance unlikely
- Update accordingly to match experimental data

LhARA Linear Optics

Laser hybrid Accelerator for Basicolacidegical Applications

Conversion & BDSIM tracking:

Next step: full beam line optics calculations

Nozzle entrance aperture

Source

Stage 1 Overview

- CAD & Monte Carlo models (BDSIM) synchronised
- Model includes locations of:
 - Diagnostics beam profile monitors & wall current monitors
 - Vacuum valves
 - Shielding walls & radiation shutters
 - Kickers/correctors
 - RF cavities
 - Collimators
 - Wien filter *

Changes from Baseline design

Β

Α

G

F

	Update	Reason
Α	+1.0185m* between GL2 & RF CAV 1	Diagnostics, corrector magnet
В	+ 0.127m* between RF CAV 1 & GL3	Practical space (engineering)
С	RF CAV 02 moved upstream by 0.0546m*	Practical space (engineering)
D	+ 0.2m between GL4 and GL5	Diagnostics, corrector magnet
Е	+ 0.4m between GL4 and GL5	Diagnostics, Radiation shutter, Wien filter
F	+ 0.2m between GL6 and GL7	Diagnostics, corrector magnet
G	Octupole moved downstream by 0.15m*, + 0.3m around switching dipole	Practical space (engineering)
-	All collimators now 0.05m* long (space taken from neighbouring drifts)	Practical space (engineering)

7

D

Ε

Stage 1 Optics Flexibility

- Flexibility preserved for delivering 1-3 cm spot sizes.

- Emittance growth introducing difficulties optimising for injection line conditions
 - Emittance ~2.7e-6, beta of 50m = 1 sigma beam radius of 1.16 cm.
 - Prioritise alpha = 0
- Solution: beam at start of switching dipole:

Injection Line: Optics Optimisation

- Able to meet conditions at injection septum
- Vary last 7 quads only
 - Constraint of 9.55 T/m.
- Solution found:
 - Small changes to field gradients
- Further updates will be required engineering
 - Proximity between magnets / coils
 - Collimator location
 - See Clive Hill's talk later

Gabor Lens in BDSIM

- Geometry:
 - 1) Outer tube (variable, default iron)
 - 2) Solenoid coils (copper)
 - 3) Vacuum tube
 - 4) Anode (copper)
 - 5) Electrode (copper)
 - 6) End caps (stainless steel)

- Example anode & electrode
 - Will be updated to match WP3 / LhARA apparatus
- EM field
 - Radial plasma (electric) field only
 - Future-proofed to later allow addition of confinement fields

- Tracking performance of Gabor lenses demonstrated
 - SCAPA beam, 15 MeV ± 2%

W. Shields 25th April 2024

Gabor Lens Strength Updates

Solenoid /	Solenoid (Design parameters)		Gabor Lens (simulation optimized)		
Gabor Lens	KS	B [T]	B [equivalent]	ΔB/B (%)	Kg
1	2.4917	1.4000	1.3850	1.07	1.5433
2	1.0187	0.5724	0.5724	0	0.2636
3	1.4486	0.8139	0.8120	0.23	0.5304
4	1.7889	1.0051	1.0051	0	0.8126
5	1.6043	0.9014	0.8750	2.929	0.6160
6	1.2448	0.6994	0.6994	0	0.3936
7	1.1660	0.6551	0.6450	1.54	0.3347

End Station 1 Phase Space

Solenoid

W. Shields 25th April 2024

14

Radiation Modelling: Loss Map

Stage 2 FFA design

Stage 1: Outstanding Questions

- Infrastructure
 - Sufficient diagnostics & infrastructure systems
 - Space in the vertical arc
 - Space required after the arc
 - Adequate shielding
- Performance
 - Combined Gabor lens 1 & 2
 - Gabor lens plasma confinement fields
 - RF
 - Beam delivery
 - Octupole, mini-beams
 - Collimation
 - Aperture

- Source & target housing
 - Dynamics after the target
 - Permanent magnet quadrupole

Alternative Injection Line Design

- Aim: mitigate injection line engineering challenges
 - FFA crossing too close to magnets
 - Insufficient space for people to work
- New solution found
 - Three unique dipoles (fields kept < 1T)
 - Integrated bending angle preserved
 - Quad strength constrained to ± 9.55 T/m
- Space reserved for:
 - Magnet coils minimum 200mm separation
 - Shielding wall + shutter
 - Collimator
 - Diagnostics + corrector magnets
- Limited degree of FFA translation
 - Exact injection point definition needed

Alternative Injection Line: Optics

- Injection conditions are preserved at the end of the injection septum magnet

- Beta, Alpha, Dispersion, and Dispersion'
- BDSIM & MADX models in good agreement
 - Small BDSIM losses (~0.2%)
- Caveat: a beam pipe aperture of ~10cm diameter will be needed

LhARA Injection Line: Direction

- Does injection have to be in the chosen cell?
 - Potential alternative at A ?
 - Other cells would be challenging
 - Too strong angle for optics
 - Cell occupied (extraction)
 - Next cell occupied prohibits corrector magnets
- Address FFA challenges first
 - Dictates direction of injection line design
- Injection line solutions exist for current FFA configuration.

- Standard parameterised source developed
- Stage 1 accelerator updates proposed
- Gabor lens tracking performance demonstrated
- Alternative FFA injection line designed
- Stage 1 design is in a good position

