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Introduction

• This is not a complete statistics lecture

• Instead, I hope to introduce some of the statistical techniques used in Particle Physics that may not have been 

covered by more general statistics courses, and give some hints on how to use them.

• We will only discuss techniques specifically used in Particle Physics today, notably:

1. Frequentist statistics

• Bayesian used in most other fields

2. profile likelihood ratio in the form developed for the LHC (and used elsewhere)

• you are probably already familiar with the other common method, least squares (𝜒2) fit

3. CLs limits on rates, cross-sections, etc.

• not really used outside our field

4. Unfolding histograms

• also used in scientific image processing (AKA “deconvolution” or “unsmearing”)

• We will not discuss the following techniques, which are more commonly taught in statistics courses

1. combination of results (BLUE etc)

• I will mention Likelihood combination

2. goodness-of-fit (𝜒2, KS test, etc)

3. ... or any techniques primarily used on event data, before the final statistical interpretation

• multivariate discrimination, machine learning, sPlots, etc.
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Lecture plan

• Building a model

1. PDF ⊗ data → Likelihood

2. Asimov dataset

• Testing a model

• examples from LHC Run1 Higgs measurements → all three stages:

3. Measurement

➢ break for lunch here?

4. Discovery

5. Exclusion

• full example in Will’s tutorial

• Presenting results without a model

6. Unfolding

7. Summary

• Will be followed by a Hands-on Tutorial this afternoon, run by Will
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} may not have time to cover this

https://indico.stfc.ac.uk/event/985/timetable/?view=standard#day-2024-06-06


Model building



PDF, dataset, and likelihood

• All the statistical tests we will be considering are based on the likelihood

𝐿 𝝁, 𝜽 = ς𝑐 ς𝑖 𝑃𝑐 𝑥𝑖|𝝁, 𝜽 ∙ ς𝑗 𝐶𝑗(𝑔𝑗|𝜃𝑗)

1. 𝐿 𝝁, 𝜽  is a function of one or more parameters of interest (𝝁), as well as other nuisance parameters (𝜽)

2. 𝑃𝑐 𝑥𝑖|𝝁, 𝜽  is the probability density function (PDF) for channel 𝑐, evaluated for each member of the dataset, 𝑥𝑖

• The use (or not) of the parameters, 𝝁, 𝜽, in the different channels determines how they are constrained by data

• eg. for binned data in histogram ℎ, with bins, 𝑖,  𝑃ℎ 𝑛𝑖|𝝁, 𝜽 = Poisson(𝑛𝑖|𝜈𝑖 𝝁, 𝜽 )

3. 𝐶𝑗(𝑔𝑗|𝜃𝑗) are additional PDFs that do not depend on the data

• eg. constraint terms for systematic uncertainties, 𝐶𝑗 𝑔𝑗 𝜃𝑗 = Gaussian(𝑔𝑗|𝜃𝑗 , 𝜎𝑗)

• Bear in mind:

• PDFs (𝑃𝑐 𝑥  and 𝐶𝑗(𝑔)) must be normalised to 1, or a constant independent of 𝝁, 𝜽

• The likelihood, on the other hand, is not normalised

• The absolute value of the likelihood (𝐿 𝝁, 𝜽 ) is irrelevant, only changes WRT 𝝁, 𝜽

• It is usually used as − ln 𝐿, or more commonly, −2ln 𝐿

           −2ln 𝐿 𝝁, 𝜽 = σ𝑐 σ𝑖 −2 ln 𝑃𝑐 𝑥𝑖|𝝁, 𝜽 + σ𝑗 −2 ln 𝐶𝑗(𝑔𝑗|𝜃𝑗)

• maximum likelihood is at minimum of −2ln 𝐿

• in the Asymptotic limit, −2ln 𝐿 is distributed like a 𝜒2
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Terminology

𝐿 𝝁, 𝜽 = ς𝑐 ς𝑖 𝑃𝑐 𝑥𝑖|𝝁, 𝜽 ∙ ς𝑗 𝐶𝑗(𝑔𝑗|𝜃𝑗)

• Model PDF, function of

• observables, 𝑥𝑖, or 𝑚𝛾𝛾

• parameters of interest (POIs), 𝝁, eg. 𝜇𝛾𝛾 and/or 𝑚𝐻

• nuisance parameters (NPs), 𝜽

• Mostly give systematic uncertainties

• eg. luminosity, efficiencies, energy scale,

theory uncertainties (signal and background)

• Dataset

• Set of entries, each containing values of some of the observables, 𝑥𝑖

• binned dataset: each entry contains the contents of a bin

• unbinned dataset: each entry contains the measured value of the observable for one event

• Datasets often combined for different channels, even different observables, or combined binned and unbinned

• Also associated global observables [1] that are common to all entries

• Many of these give central value of a systematic uncertainty used in the constraint term

• A likelihood fit, usually to −2ln 𝐿

• minimises the likelihood with respect to floating parameters

• depending on the statistical test, some POI/NPs may be fixed
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𝑚𝛾𝛾 [GeV]

[1] Global observables are not

currently part of the RooFit dataset,

but should be logically associated

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-08/


RooFit

• RooFit is a tool for creating models

• RooAbsPdf: base class for PDFs. Will often be constructed from many PDF types.

• eg. RooGaussian, RooProdPdf, RooSimultaneous

• these are functions of each other, and of RooRealVar parameters that can be mapped to fit parameters

• can be constructed directly from C++ or Python, or via a “factory” from a specification

• eg. SUM::model (f*RooGaussian::g(x,m[0],1), RooChebychev::c(x,{a0[0.1],a1[0.2],a2[-0.3]}))

• RooAbsData: abstract dataset type. Can hold binned and/or unbinned data

• RooStats::ModelConfig (optional): holds configuration information for a single model

• PDF, POIs, NPs, observables, etc

• RooWorkspace: container for PDFs, datasets, and ModelConfigs

• This can be saved to a workspace.root file to allow separate statistical analysis

• everything needed should be stored here, allowing sharing, combining, archiving

• RooFit also provides fitting and basic statistical analysis tools

• RooAbsPdf::createNLL: constructs − ln 𝐿 from a PDF and dataset

• RooMinimizer: uses Minuit to minimise − ln 𝐿 for specified parameters
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https://root.cern/download/doc/roofit_quickstart_3.00.pdf


Higher-level tools

• 2007: RooFit package in ROOT allows building models and fitting to data using the venerable MINUIT [CERN, 1975–] minimization algorithm

• 2008: RooStats added to ROOT to provide limit-setting functionality

• a range of different techniques (Frequentist, Hybrid, Asymptotic, and some basic support for a fully Bayesian approach)

• also introduced the HistFactory model specification
• a way of defining a binned model based on input ROOT histograms and XML metadata files

• 2009–2018: HistFactory and RooStats heavily used via a multitude of higher-level toolkits

• Fitting large models took longer and longer [1].
• Could this be improved by replacing MINUIT with other minimization algorithms running on GPUs?

• 2018: pyhf and zfit released. They can both exploit GPUs.

• pyhf: pure-Python implementation of the HistFactory specification

• zfit: unbinned models minimized using TensorFlow

• 2019–2021: exploitation and comparison of the new techniques revealed that:

• GPUs can help unbinned models (zfit), but not so much binned models (pyhf)

• pyhf’s JSON format for HistFactory was a genuine improvement over the previous XML+ROOT format

• improving PyROOT makes using RooFit just as easy from Python or C++

• 2022: JSON-format HistFactory is added to RooFit

• GPU support also in development for RooFit

• 2023: xRooFit – a high-level API for RooFit

• "xRooFit is to RooFit as Keras is to TensorFlow“

• Included in ROOT (Experimental namespace)

• 2024: HS3 – JSON/YAML workspace format for publishing in HEPData

• 2024: RooFit vectorizing CPU evaluation in ROOT 6.32, up to 10X faster

Advice from Will: unless your research is specifically on optimizing fitting for statistical analysis, you are best-placed if you stay as close to 
RooFit as possible, safe in knowledge that any worthwhile improvements developed elsewhere will make their way into RooFit in time

• using xRooFit makes this easy!
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[1]  At the time of the Higgs discovery, Higgs

      model fitting with RooStats was the largest

      single analysis user of ATLAS Grid CPU.

https://twiki.cern.ch/twiki/bin/view/RooStats/
https://cds.cern.ch/record/1456844/
https://github.com/scikit-hep/pyhf
https://github.com/zfit/zfit
https://www.tensorflow.org/
https://root.cern/manual/python/
https://gitlab.cern.ch/will/xroofit
https://keras.io/
https://root.cern.ch/doc/v630/group__roofit__dev__docs__hs3.html


Asimov dataset

• An Asimov dataset [1] is generated for a particular set of model parameters such that the maximum likelihood

best-fit value of all those parameters are equal to their generated values.

• ie. maximising 𝐿𝐴 𝜇, 𝜽 𝜇0, 𝜽0  will yield Ƹ𝜇 = 𝜇0, 𝜽 = 𝜽0

• When used in a statistical test, it will return the result expected from that model configuration

• eg. 𝑝0 calculated using Asimov dataset generated with 𝜇 = 0 will return the p-value expected from no signal

• Asimov datasets are built as binned datasets, in which the event count in each bin is set to the expected event 

yield for the chosen model parameters.

• For unbinned models, a binned distribution is generated with chosen binning fine enough to reproduce all 

significant features of the model.

• Note this means the Asimov dataset can look different from data or toy datasets:

fractional bin contents or unbinned→binned

• For RooFit models:

dataset = RooStats::AsymptoticCalculator::GenerateAsimovData (pdf, observables);
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[1] Named for SF author, Isaac Asimov, whose

     1955 short story, Franchise, envisaged the

     2008 US Presidential Election decided by

     one voter representative of the entire electorate.

[arXiv:1007.1727]
As an Asimov fan of old, this name makes me very happy.

https://arxiv.org/abs/1007.1727


Statistical tests



The three ages of discovery

1. Exclusion: CLs

2. Discovery: p0

3. Measurement: ොμ ± σ
or more generally,

confidence intervals
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/


Measurement



Measurement: profile likelihood ratio   

• The likelihood is a function of our parameters of interest (POI), here a single 𝜇,

and various nuisance parameters (NP), 𝜽: 𝐿(𝜇, 𝜽).

• Note that the 𝜽 are often dependent on 𝜇.

• We form the profile likelihood ratio as: Λ 𝜇 =
𝐿(𝜇,  𝜽 𝜇 )

𝐿 ෝ𝜇,  𝜽
 

• Λ(𝜇) can be evaluated with two fits:

1. Ƹ𝜇 and 𝜽 are the “best fit” (maximum likelihood estimate, MLE) values of 𝜇 and 𝜽

2.  𝜽 𝜇  are the “conditional best fit” values for all the NPs

at a given, specified, 𝜇.

• Plot −2 ln Λ(𝜇) against 𝜇

• Minimum is at −2 ln Λ Ƹ𝜇 = 0 (by definition)

• In the asymptotic limit (large N),

• this will be distributed like a 𝜒1
2 distribution

• or 𝜒𝑛
2 for 𝑛 POIs

• so 68% confidence interval is the range where −2 ln Λ 𝜇 < 1
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ො𝜇 +1𝜎−1𝜎

maximise 𝐿 𝜇, 𝜽 𝜇  for all 𝜽 𝜇  with specified 𝜇

maximise 𝐿 𝜇, 𝜽  for all 𝜇, 𝜽  (MLE)

𝜇 = 1.33−0.18
+0.21

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-02/


Measurement: 2D contours

• For multiple POIs

• calculate −2 ln Λ(𝝁) for all points on a grid and

• draw contours for regions −2 ln Λ 𝝁 < 𝐷−1(𝜒𝑛
2),

• where 𝐷−1(𝜒𝑛
2) is the inverse of the cumulative 𝜒𝑛

2 distribution, for 𝑛 POIs. [1]

• 2D contours:

• 𝐷−1(𝜒2
2(68%)) = 2.30

• 𝐷−1(𝜒2
2(95%)) = 6.18
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−2 ln Λ( Ƹ𝜅𝛾 , Ƹ𝜅𝑔) = 0

PLB 726 (2013) 88

[1] 𝐷−1(𝜒𝑛
2(𝑝)) = ROOT::Math::chisquared_quantile (p, n)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-02/


Measurement: variations on a theme   
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95% confidence interval with (BBSM≥0) bound:  BBSM < 0.34

JHEP 08 (2016) 045

disjoint confidence interval: λtg = [−2.00, −1.59] ∪ [1.50, 2.07]

kink due to different sign combinations of profiled NPs:   |λbZ| = 0.58−0.20
+0.16

multiple contours for different channels and their combination

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2015-07/


Measurement: scanning the likelihood curve

• To calculate a single PLR, require two fits:

• −2 ln Λ 𝜇 = −2 ln
𝐿 𝜇,  𝜽 𝜇

𝐿 ෝ𝜇,  𝜽

                     = −2 ln 𝐿 𝜇,  𝜽 𝜇 + 2 ln 𝐿 Ƹ𝜇,  𝜽

• The second term is independent of 𝜇, so only needs to be evaluated once

• … or not at all, if the minimum can be determined from the curve

• removes ambiguity from the offset calculated in two ways

(unconditional vs conditional fits)

• should be ~quadratic near minimum, so can use

a quadratic interpolation of lowest 3 points

• Can (approximately) cross-check the result with the unconditional fit for −2 ln 𝐿 Ƹ𝜇,  𝜽 :

• Ƹ𝜇 should agree within the precision of the fit and of the interpolation

• inverse Hessian at the minimum is the local covariance matrix, so 𝜎0
2 = 𝐻−1 𝜇, 𝜇

• Minuit will calculate (symmetric) errors from the Hessian

• run with strategy=2, or call Hesse() explicitly.

• Minuit’s Minos() is similar to the curve scan, but without user control or diagnostic plot

• Example comparison: 𝜇 = 1.29−0.65
+0.87 (curve) with 𝜇 = 1.29 ± 0.73 (Hessian)
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𝜇 = 1.29−0.65
+0.87



Measurement: technical issues – CPU

• Sometimes significant CPU requirements

• Time = (likelihood evaluation time) * (number of evaluations to fit) * (number of fits)

• Mitigations:

• Simplify likelihood (faster likelihood evaluation)

• Reduce or combine number of NPs (simplifies likelihood and fewer fit cycles)

• Use fewer points in scan and interpolate (quadratic or spline)

• 2D interpolation is more cumbersome

• ROOT’s TGraph2D can do linear interpolation of contours (use GetContourList() to extract)

• Run different points in parallel, eg. in batch or on the Grid.
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Measurement: technical issues – fitting

• Fit problems

1. Fit failures reported by MINUIT (or other minimiser)

• often due to flat or otherwise non-parabolic minimum

2. Bumpy curve, kinks, or bad points – even if MINUIT says the fit succeeded

• Possible causes:

• Numerical precision in likelihood evaluation

• Undefined component in likelihood evaluation

• eg. –ve log for some observables, in a region of parameter space that the fit strays into 

• Minuit tolerance settings

• NPs hitting their parameter boundary

• error estimate will not be correct, even inconsistent

• parameter errors vs. 𝑉𝑖𝑖

• Some POIs or NPs don’t budge from initial position

• Minuit can’t “tunnel” from secondary minimum
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Measurement: correlation matrix

• For ≥ 3 POIs, it is not often practical to show contours

• requires scanning a large number of points

• results not easy to visualise

• Another option is to provide the correlation matrix at the best-fit point for all POIs

• calculate using inverse Hessian 𝜌 𝜇1, 𝜇2 = 𝐻−1 𝜇1, 𝜇2  / 𝐻−1 𝜇1, 𝜇1 𝐻−1 𝜇2, 𝜇2
1/2

• but beware that the correlations at the best-fit can be quite different elsewhere
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JHEP 08 (2016) 045

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2015-07/


Validation of model

• The NPs’ effect on a model can be tested by determining

their post-fit pulls and impact on the POI

• Often (perhaps confusingly) displayed together:

1. NP best-fit value and error

• relative to nominal, ( መ𝜃 − 𝜃0)/Δ𝜃, here

indicated by blue dotted lines at 0 ± 1.

• refers to scale at the bottom

2. Impact of NP’s error on POI

• ±Δ Ƹ𝜇 = መƸ𝜇 መ𝜃 ± 𝜎𝜃 − Ƹ𝜇

• important to check relative sign of impact

if correlating NPs in a combined workspace

• can use pre-fit (nominal) and/or post-fit NP errors

• refers to scale at the top, here relative to the total error, Δ Ƹ𝜇/Δ Ƹ𝜇tot

• Size of impact indicates importance of each NP
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-08/


Discovery

maybe a good place

to break for lunch?



• In the asymptotic limit (large N), the PLR, Λ 𝜇 =
𝐿(𝜇,  𝜽 𝜇 )

𝐿 ෝ𝜇,  𝜽
, gives the compatibility between 𝜇 and Ƹ𝜇 hypotheses.

• Where 𝜇 is a ratio relative to the SM (eg. 𝜇 = 𝜎/𝜎SM), we can test

1. Compatibility with background-only hypothesis: 𝑍0  = √−2 ln Λ(𝜇 = 0)

2. Compatibility with SM (1 POI):                           𝑍SM = √−2 ln Λ(𝜇 = 1)

3. Compatibility with SM (𝑛 POIs):                         𝑍SM = 𝐷−1(𝜒𝑛
2(−2 ln Λ 𝝁 ))

• 𝑍𝜇 is the significance (𝑁𝜎), which (assuming 𝜒1
2 for 1 POI) has equivalent p-value,  𝑝𝜇 = 𝑠 Φ −𝑍𝜇 ,  where

• 𝑠 = 1 for single-sided test like 𝑝0  [1]

• 𝑠 = 2 for double-sided test like 𝑝SM

• Φ 𝑍  is the Gaussian CDF [2]

• 𝑝0 interpreted as the significance of a signal,

relative to a background-only hypothesis

Discovery significance
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−2 ln Λ = 11.2
𝑍0 = 3.3𝜎
𝑝0 = 0.04%

PLB 726 (2013) 88

[1] 1-sided p-value is capped at 𝑝0 < 0.5.

      Can uncap by using −𝑍0 for Ƹ𝜇 < 0

[2] Φ(𝑍)     = ROOT::Math::gaussian_cdf(Z)

     Φ−1(𝑝)  = ROOT::Math::gaussian_quantile(p,1.0)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-02/


Discovery: 𝑝0 vs 𝑚H

• Each mass hypothesis (𝑚𝐻) has its

own likelihood function, 𝐿𝑚𝐻
(𝜇, 𝜽), eg.

1. 𝑚𝐻 hypothesis in kinematic fits

2. 𝜇 = 𝜎/𝜎SM(𝑚𝐻) so need 𝑚𝐻-specific

SM production XS and decay BR [LHC-H-XS-WG]

3. each combined likelihood includes

accessible decay modes at specified 𝑚H

• 𝑝0 vs 𝑚𝐻 plot is the result of ~independent fits to each 𝐿𝑚𝐻
 [1]

• The largest local significance is 6.0𝜎 (𝑝0~10−9) at 𝑚𝐻 = 126.5 GeV

• the result of many (part-correlated) searches across the full 110 ≤ 𝑚𝐻 < 600 GeV range

• correct for the “look-elsewhere effect” using Gross-Vitells formula [arXiv:1005.1891]:

• 𝑝global = 𝑝local + 𝑁(𝑐0) 𝑒− 𝑐−𝑐0 /2  = 10−9 + 9 ∙ 𝑒− Τ6.02 2 = 1.4 ∙ 10−7  → 5.1𝜎

• Still using asymptotic approximation, which we may not be confident in for new signal

   → test with toys
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arXiv:1005.1891

[1] except in 𝑚𝐻 measurement,

     use single likelihood 𝐿(𝑚𝐻, 𝜽)

https://arxiv.org/abs/1101.0593
https://arxiv.org/abs/1005.1891
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/


• Toy MC (AKA “Monte Carlo pseudo-experiments”) can be generated directly from the components of the likelihood 

function

1. For each toy, generate

1. toy dataset (pdf.generate(obs)), with 𝜇, 𝜽 determined from expectation or fit to data

2. set of global observables (pdf.generate(globObs))

• simulates variation of “NP truth”

2. Calculate a test statistic, 𝑡𝜇 = −2 ln Λ(𝜇), requiring:

1. conditional fit, under hypothesis being tested,

eg. 𝜇 = 0, background-only for 𝑝0

2. unconditional fit for best-fit Ƹ𝜇 for this toy

3. for signal significance, use one-sided

capped-below profile likelihood ratio:

 𝑞0 = ൝ 
𝑡𝜇=0 if Ƹ𝜇 > 0

0 if Ƹ𝜇 ≤ 0

• The observed p-value is just the fraction of toys with

test statistic larger than the observed:

• 𝑝0 = 𝑁toys 𝑞0 > 𝑞0,obs  / 𝑁toys

Discovery with toys
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PRD 90 (2014) 052004

Example distribution of t0
(here for a 2-sided test of compatibility of two 

signals, not 1-sided signal significance)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-12/


Discovery with toys
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PLB 710 (2012) 49

• For the 2012 ATLAS Higgs discovery

• the 6.0𝜎 local significance was reduced to 5.9𝜎 by including the effect of energy-scale systematics

• Significance of ESS could only be measured using toys at 𝑚𝐻 = 126.5 GeV

• limited by CPU time available (used extrapolation from 300k toys)

• The cross-check with toys is more clearly seen with a previous sample

• lower significance → smaller number of toys required

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-03/


Exclusion



Exclusion: finding upper limit with CL𝑠

• To set a limit the null-hypothesis is a particular signal+background hypothesis

• here called 𝑝𝜇 = CL𝑠+𝑏

• For an upper limit, we only want to exclude values below the limit

• use test statistic: one-sided capped-above profile likelihood ratio

 𝑞𝜇 = ൝ 
𝑡𝜇 if Ƹ𝜇 < 𝜇

0 if Ƹ𝜇 ≥ 𝜇

• In particle physics, we often use CL𝑠 instead of CL𝑠+𝑏 to set upper limits

• CL𝑠 divides the tested p-value (𝑝𝜇 = CL𝑠+𝑏) by

the background-exclusion p-value (𝑝𝑏 = CL𝑏)

• 𝑝CL𝑠 = 𝑝𝜇/𝑝𝑏

• with the expected background, 𝑝𝑏 = 0.5, so this usually has little effect,

but it is useful to inhibit a background fluctuation spuriously excluding a

hypothesis to which we have little sensitivity

• 𝑝𝜇 and 𝑝𝑏 can be estimated with toys similar to the procedure for discovery
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𝑞𝜇

Will will explain this

in detail in the tutorial



Exclusion: CL𝑠 asymptotic approximation 

• Asymptotic limit obtained using the procedure from Asimov Paper [arXiv:1007.1727]

• null hypothesis follows a 𝜒2 distribution with a δ-function at 𝑞𝜇 = 0

• alternative hypothesis follows a non-central 𝜒2 distribution

• non-centrality parameter related to 𝑞𝜇(Asimov)

• Various tools to calculate asymptotic p-values, eg.

• RooStats::AsymptoticCalculator

• provided with hands-on tutorial:
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Will will explain this

in detail in the tutorial

https://arxiv.org/abs/1007.1727


Exclusion limit setting with CL𝑠
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• For a 95% CL limit, reject a particular 𝜇 (s+b) hypothesis if 𝑝CL𝑠 ≤ 0.05.

• to obtain a limit, find 𝜇up, the 𝜇 value for which 𝑝CL𝑠 = 0.05

• For toys, this means generating/fitting toys for various 𝜇 and interpolating 𝜇up

• much faster to use asymptotic approximation

• but may need to test validity using toys, eg. when only a few events

90% CL

95% CL

Will will explain this

in detail in the tutorial



Exclusion limit vs 𝒎𝑯

• In Higgs search, plot 𝜇up vs 𝑚𝐻

• different likelihood for each 𝑚𝐻, as before
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PLB 716 (2012) 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/


Exclusion limit vs 𝒎𝑯

• In Higgs search, plot 𝜇up vs 𝑚𝐻

• different likelihood for each 𝑚𝐻, as before
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Observed
SM Higgs (𝜇 = 1) with these 𝑚𝐻 excluded

PLB 716 (2012) 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/


Exclusion limit vs 𝒎𝑯

• In Higgs search, plot 𝜇up vs 𝑚𝐻

• different likelihood for each 𝑚𝐻, as before
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PLB 716 (2012) 1

Expected
SM Higgs (𝜇 = 1) with these 𝑚𝐻 excluded

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/


Unfolding



Unfolding – the problem

• In other fields known as “deconvolution” or “unsmearing”

• often applied to “correct” images; we normally use it for histograms

• Given a “true” distribution, 𝜇𝑗, that is corrupted by measurement/detector effects, described by a response matrix, 

𝑅𝑖𝑗, and background, 𝛽𝑖, we measure

• This may involve

1. bin migration and smearing

• events moving between bins (off-diagonal 𝑅𝑖𝑗)

• if not this, then don’t bother with unfolding

2. inefficiencies

• undetected events (𝜖𝑖 = σ𝑗=1
𝑁 𝑅𝑖𝑗 < 1)

3. background / fake events

• measured events not from true distribution (𝛽𝑖 > 0)

• We use unfolding to try to recover the true distribution
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𝜈𝑖 = 

𝑗=1

𝑁

𝑅𝑖𝑗𝜇𝑗 + 𝛽𝑖 or    𝝂 = 𝑹𝝁 + 𝜷



Regularisation

• We could unfold by inverting the response matrix

 𝝂 = 𝑹−1(𝝁 − 𝜷)

• Statistical fluctuations mess this up: 𝑹−1 can’t distinguish between a fluctuation and fine structure in the truth, 𝝂

• Results in large uncertainties in the unfolded result

• This can be resolved with some form of regularisation

• reduce the statistical error by introducing a systematic bias

• regularisation parameter controls degree of bias

• many different methods available, e.g.

• Simple correction factor method assumes similar bin-migrations as in MC

• Tikhonov regularisation biases to a smooth distribution

• Iterative Bayes unfolding biases towards initial guess (MC truth)
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Credit: Adam Bozson (RHUL, 2018)

http://www.pp.rhul.ac.uk/~cowan/stat/orsay/2018/GP_unfolding.pdf


Unfolding advice

• Don’t unfold! (unless you can’t help it)

• if you have the truth, apply (“fold”) the detector/measurement response to the truth

• much better than trying to unfold the measurements back to the truth, e.g.

1. if you have a functional model for your truth distribution, fit the model parameters

2. if you have a theory prediction, compare the corrected predictions to your measurements

• Unfolding is needed if your final result has to be the “true” distribution, for which there is no model

• e.g. for comparison with another experiment

• Don’t regularise if you don’t have to

• If the statistical fluctuations are small compared to the bin migrations, can just invert

• check the statistical uncertainties (especially bin-bin correlations) are acceptable

• If you have to regularise:

• optimise regularisation parameter for bias vs statistical uncertainties

• check bias with systematically independent MC samples (e.g. different event generators)

• bias should be included in systematic uncertainties of the result

• unfolding introduces bin-bin correlations – in bias and statistical errors

• need to be understood and reported

• ideally cross-check with more than one unfolding method
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Unfolding software

• ROOT includes TSVDUnfold and TUnfold methods built-in

• RooUnfold package provides a common interface and tools for several unfolding methods:

1. unregularised matrix inversion

2. simple correction factors

3. Iterative Bayes unfolding (IBU)

4. SVD unfolding (via TSVDUnfold)

5. Tikhonov regularization with least square fit (via TUnfold)

6. unfolding with Gaussian Processes (GP)

7. Iterative dynamically-stabilized unfolding (IDS)
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https://root.cern.ch/doc/master/classTSVDUnfold.html
https://root.cern.ch/doc/master/classTUnfold.html
https://gitlab.cern.ch/RooUnfold/RooUnfold


Summary



Summary of model building

𝐿 𝝁, 𝜽 = ς𝑐 ς𝑖 𝑃𝑐 𝑥𝑖|𝝁, 𝜽 ∙ ς𝑗 𝐶𝑗(𝑔𝑗|𝜃𝑗)

• Model PDF, function of

• observables

• parameters of interest (POIs)

• nuisance parameters (NPs)

• Dataset

• Entries containing values of some of the observables

• Global observables are common to all entries

• Likelihood fit minimise −2ln 𝐿

• Build models with

1. RooFit (C++, Python, or factory)

2. HistFactory (XML)

3. xRooFit (C++, Python)

4. …

• Keep model and data in RooFit workspace files or export to HS3 JSON

• Asimov dataset allows tests of the model expectation
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Summary of statistical tests

• Measurement, scanning profile likelihood ratio

• tools: RooFit

• test statistic: (two-sided) profile likelihood ratio

  t𝜇 = −2 ln Λ 𝜇 = −2 ln
𝐿 𝜇,  𝜽 𝜇

𝐿 ෝ𝜇,  𝜽

• Discovery with profile likelihood ratio, asymptotic or toys

• tools: RooFit, RooStats, xRooFit

• test statistic: one-sided capped-below profile likelihood ratio

 𝑞0 = ൝ 
𝑡𝜇=0 if Ƹ𝜇 > 0

0 if Ƹ𝜇 ≤ 0

• Exclusion with CLs, asymptotic or toys

• tools: RooFit, RooStats, xRooFit

• test statistic: one-sided capped-above profile likelihood ratio

 𝑞𝜇 = ൝ 
𝑡𝜇 if Ƹ𝜇 < 𝜇

0 if Ƹ𝜇 ≥ 𝜇
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𝜇 = 1.29−0.65
+0.87



Statistics tutorial this afternoon

• The hands-on tutorial session uses a minimal amount of RooFit, but it is important that you have some familiarity 

with the following important RooFit classes:

• Variables:    RooRealVar, RooCategory

• Collections: RooArgSet, RooArgList

• Datasets:    RooDataSet

• If you are familiar with working with all of these classes then you are ready for the hands-on tutorial!

• For everyone else, we have some materials and exercises for you to go through ahead of the session, which will 

make you familiar enough with these objects for the session.

• Instructions:

• Login to monty.stfc.ac.uk

• if you haven’t got a login, please contact Will, will.buttinger@stfc.ac.uk

• Clone the materials:

 git clone --branch 2024 https://gitlab.cern.ch/will/ralstats.git

and follow the Prerequisite.ipynb notebook.

• The material should take 1 to 2 hours to go through if you have no prior RooFit knowledge.
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• PDFs:            RooAbsPdf

• Fit Results:    RooFitResult

• Workspaces: RooWorkspace

https://monty.stfc.ac.uk/
mailto:will.buttinger@stfc.ac.uk
https://gitlab.cern.ch/will/ralstats/-/tree/2024


Backup



More help

• For a more thorough introduction, I recommend:

1. CERN Academic Training Lecture series, which has 3–4 hour recorded lectures by

different HEP statistics experts every few of years.

a. “Statistics for Particle Physicists”, by Glen Cowan (June 2021)

previous lectures also useful, e.g.

b. Eilam Gross in 2018

c. Glen Cowan in 2012 (part 4 on unfolding)

d. Kyle Cranmer in 2011

2. “Statistics Methods for the LHC” – online documentation from ATLAS, with

RooFit / RooStats / RooUnfold code examples.

3. “Asymptotic formulae for likelihood-based tests of new physics”
     Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJ C (2011) 71:1554
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https://arxiv.org/abs/1007.1727
https://indico.cern.ch/category/72/
https://indico.cern.ch/event/1040092/
https://indico.cern.ch/event/687486/
https://indico.cern.ch/event/173726/
https://indico.cern.ch/event/126254/
https://statisticalmethods.web.cern.ch/StatisticalMethods/
https://arxiv.org/abs/1007.1727
https://statisticalmethods.web.cern.ch/StatisticalMethods/
https://indico.cern.ch/event/1040092/


RooStats, HistFactory, and pyhf

1. RooStats (ROOT built-in) provides higher-level statistical analysis tools

• eg. ProfileLikelihoodTestStat, AsymptoticCalculator, FrequentistCalculator, HypoTestInverter

2. HistFactory (ROOT built-in) is a tool for creating models of binned data with systematics

𝐿 𝝁, 𝜽 = ς𝑐 ς𝑖 Poisson(𝑛𝑖|𝜈𝑖 𝝁, 𝜽 ) ∙ ς𝑗 Gaussian(𝑔𝑗|𝜃𝑗 , 𝜎𝑗)

• Multiple disjoint channels, multiple samples contributing to each with additional (possibly shared) systematics

• Many analyses can use HistFactory instead of calling RooFit directly.

• Model specified with XML, which refers to histograms in hist.root files

These tools can be used from Python, but non-ROOT Python alternatives are also available:

1. pyhf is a reimplementation of HistFactory in pure-Python

• no dependence on ROOT or RooFit

• XML+histograms specification replaced by JSON

• JSON is easier to read and modify

• full conversion of models from HistFactory and back

• reproduces HistFactory results [tested]

• pyhf allows other minimisation techniques, not just MINUIT (CERN, 1975–)

• supports multi-threading and GPUs

• so far, for most HEP applications, RooFit / MINUIT is just as fast

2. zfit is a general-purpose model fitting package, using TensorFlow
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https://twiki.cern.ch/twiki/bin/view/RooStats/
https://cds.cern.ch/record/1456844/
https://github.com/scikit-hep/pyhf
https://cds.cern.ch/record/2684863
https://github.com/zfit/zfit


Hypothesis Tests

• Exclusion and Discovery plots present the results of a collection of Hypothesis Tests

• A Hypothesis Test is really the process of calculating a p-value and seeing whether its less than or greater than 

a critical value (0.05 in the case of 95% CL)

• Hypothesis Space: parameters of the signal model we want to study (parameter grid)

• Test Statistic to perform hypothesis tests with

• Exclusions: one-sided capped-above Profile Likelihood Ratio Test Statistic 𝑞𝜇

• Discovery: one-sided capped-below Profile Likelihood Ratio Test Statistic 𝑞0

• Types of p-values:

• null p-value: The p-value under the null hypothesis (the hypothesis being tested)

• In exclusion tests the null hypothesis is a particular s+b hypothesis (CL𝑠+𝑏)

• In discovery tests the null hypothesis is the background-only hypothesis (𝑝0)

• alternative p-value: The p-value under an alternative hypothesis

• only relevant for exclusions (also called CL𝑏)

• CLs p-value: The ratio of the above two p-values

• Type of measurement:

• Observed p-value / limit, based on event data

• Expected p-value / limit, based on a particular model

• eg. SM, background only, signal model

• often shown with median line and ±1𝜎,  ±2𝜎 bands
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Exclusion: asymptotic CLs

• CLs: 𝑝CL𝑠 = 𝑝𝜇/𝑝𝑏

• CLs divides the tested p-value (CLs+b) by the background-exclusion p-value (CLb)

• normally has little effect, but it is useful to inhibit a fluctuation spuriously excluding a hypothesis to which we have little 

sensitivity

• For a 95% CL limit, reject a particular 𝜇 (s+b) hypothesis if 𝑝CL𝑠 ≤ 0.05.

• to obtain a limit, find 𝜇up, the 𝜇 value for which 𝑝CL𝑠 = 0.05

• Asymptotic limit obtained using the procedure from Asimov Paper [arXiv:1007.1727]

• 𝑞𝜇  = −2 ln Λ(𝜇)           PLR for observed data

• 𝑞𝜇,𝐴 = −2 ln Λ𝐴(𝜇|0)      PLR for background-only Asimov dataset

• 𝑝CL𝑠 = (1 − Φ √𝑞𝜇 ) / Φ(√𝑞𝜇,𝐴 − √𝑞𝜇)

• scan 𝜇 to find 𝜇up for which 𝑝CL𝑠 = 0.05.

• For the median expected limit, 𝜇up = 1.96 𝜎(𝜇up)                  Φ−1 1 − Τ0.05 2 = 1.96

• where  𝜎 𝜇up = Τ𝜇up √𝑞𝜇up,𝐴,  so again requires a numerical determination of 𝜇up

• The expected bands, median±𝑁𝜎,   𝜇up+𝑁 =  (Φ−1 1 − 0.05Φ 𝑁 + 𝑁) ∙ 𝜎(𝜇up+𝑁)
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https://arxiv.org/abs/1007.1727


CLs procedure with RooStats

Tim Adye - RAL Hands-on Statistics 47

• For RooFit models, see:

1. RooStats StandardHypoTestInvDemo.C tutorial, or

2. ATLAS CLs tutorial

• In summary, create an asymptotic or toy calculator:

1. RooStats::AsymptoticCalculator  calc (data, bModel, sbModel);   // or

2. RooStats::FrequentistCalculator  calc (data, bModel, sbModel);

• and pass that to the hypothesis test inverter:

RooStats::HypoTestInverter  hypo (calc);

result = hypo.GetInterval();

RooStats::HypoTestInverterPlot (,,result);

• For HistFactory-style models,

pyhf has built-in tools to calculate CLs

https://root.cern.ch/doc/master/StandardHypoTestInvDemo_8C.html
https://statisticalmethods.web.cern.ch/StatisticalMethods/tutorial/capstone02_cls_limits/


Isaac Asimov – Franchise
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The Asimov dataset 

[arXiv:1007.1727] is 

named for SF author, 

Isaac Asimov, whose 

1955 short story, 

Franchise, envisaged 

the 2008 US 

Presidential Election 

decided by one voter 

representative of the 

entire electorate.

This is my copy of the 

story, in a collection.

https://arxiv.org/abs/1007.1727
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