Computing

Stewart Martin-Haugh (RAL)

RAL Graduate Lectures
June 2024

Science and
Technology
Facilities Council

Particle Physics

Stewart Martin-Haugh (STFC RAL) Computing 1/70

Introduction

» Computers offer two principal advantages over humans

» Correctness
»> Speed

Stewart Martin-Haugh (STFC RAL) Computing 2/70

Programming languages

» Python and C++ most popular in particle physics

» Python increasingly popular in the outside world

» C++ isn't going anywhere, but doesn’t seme to be growing much

% of Stack Overflow questions that month

16.00% -

14.00% | f L.
12.00% -
10.00% |

8.00%

= T T U T i U 1 I J U 7\
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Source: Stack Overflow

Stewart Martin-Haugh (STFC RAL) Computing

Tag

®
® python
.

(I 1]

https://insights.stackoverflow.com/trends

Python

» Python is particularly good for scripts
» Easy to read and write
> Slower than C++ (interpreted vs. compiled) but can call C++,
Fortran if speed is necessary
» Most experiment frameworks use Python to glue bits of C++
together (Athena, CMSSW)
» Increasing interest in common and open-source tools - see e.g.
PyHEP workshops

Scikit
HEP

Stewart Martin-Haugh (STFC RAL) Computing

https://indico.cern.ch/event/833895/timetable/

CH+

» Big, complicated language - multiple ways to do things

» C (arrays, pointers, functions)

» Classic C++ (new, delete, classes)

> Templates (template <class T>)

» Modern C++ (std::unique_ptr, for (auto x: y))

» In large codebases (e.g. experiment offline software) all of these will
co-exist (happily/unhappily)

» Evolving language - C++11 standard brought modern C++, new
standards every 3 years

» C and C++ are probably the best-supported ways to write fast code

Stewart Martin-Haugh (STFC RAL) Computing 5/70

Other languages

My views:
» Go: like a more modern version of C (less complication)
» Rust: aims to be like a correct-by-default C++
» Julia: aims to be like a fast Python

A rustacean

The gopher

Stewart Martin-Haugh (STFC RAL) Computing

Correctness

» How do you verify a calculation that you can't do any other way?

» Find a version of your calculation where you know what the answer
should be

» Change something that should not change the answer and check the
result

Stewart Martin-Haugh (STFC RAL) Computing 7/70

Software engineering®

» Everything around the actual writing of code

» Debugging, testing, packaging, operating environments

> Software engineering is an entire discipline, but just one of the skills
you need in HEP

ITerm coined by Margaret Hamilton, lead programmer for the Apollo Mission

guidance computer
Stewart Martin-Haugh (STFC RAL) Computing 8/70

Debugging thoughts
Brian Kernighan (C, Unix etc):

» The most effective debugging tool is still careful thought, coupled
with judiciously placed print statements.

» Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be when
you write it, how will you ever debug it?

Rubber ducks and teddy bears:

» Explain your problem to anyone at all: doesn't have to be an expert
programmer

» Doesn't have to be a living being: rubber ducks and teddy bears

» Draft an email to an expert explaining what you think is happening

Stewart Martin-Haugh (STFC RAL) Computing 9/70

Debugging thoughts

1. Reproduce the problem and generate exact setup instructions
(environment, command, extra software on top)

2. Find a fix

3. Establish that the fix has no obvious side effects (e.g. an unrelated
test still gives the same result)

Stewart Martin-Haugh (STFC RAL) Computing

Static analysis

» There is no way to tell, in general, what a program will do beyond
running it (Turing completeness)

» But you can tell that some things will crash
» Automated tools to help
C++

» Compiler warnings (enable as
many warnings as possible,

Python don't consider your code
> flake8 (combination of pep8 complete until they are all
style guide and static analysis) fixed)
> vulture > cppcheck (fast!)

» clang-analyzer
» Coverity (slow...)
> Add these to your testing (more on testing later)

Stewart Martin-Haugh (STFC RAL) Computing 11/70

Dynamic analysis

Add extra information to your compiled binary that makes it crash or
warn when things have gone wrong

» Extra print statements
Debug symbols: add line numbers etc to your crashes g++ -g

>

» GDB and friends: learn to use a debugger, read stack traces

» Valgrind: run in a virtual environment that flags memory errors
>

Sanitizer tools (part of Clang project): tell you if you're writing
outside allowed memory, using uninitialised data

Stewart Martin-Haugh (STFC RAL) Computing 12/70

Memory errors (C++)

» Most common: reading/writing beyond an array

vector<float> vec;
vec.push_back(1);
std::cout << vec[2] << std::endl;

» This will read random memory: could crash, could print 0, could
print 1.1755e38

» Cause irreproducible results

» Can catch by compiling with AddressSanitizer or running under
Valgrind

» vec.at (i) will throw an exception if you go past the end of the
vector, but it's a bit slower (unlikely to matter for you)

Stewart Martin-Haugh (STFC RAL) Computing 13/70

Uninitialised data

#include <iostream>

class myclass {

public:
float a;
float b;
float c;

};

int main()

{
myclass the_class;
std::cout << the_class.a << std::endl;
std::cout << the_class.b << std::endl;
std::cout << the_class.c << std::endl;

}

gt++ -02 example.cpp
./a.out
valgrind ./a.out

Stewart Martin-Haugh (STFC RAL) Computing

Out of bounds read/write

#include <iostream>
#include <vector>

int main()
{
std::vector<int> myvec;
myvec[1] = 42;
std::cout << myvec[2] << std::endl;

gt++ -02 example.cpp
./a.out
valgrind ./a.out

Stewart Martin-Haugh (STFC RAL) Computing

Floating point errors

>

>

1.0/0.0, 0.0/0.0, sqrt(-1): inf, NaN, NaN - all of these are
floating point exceptions (FPEs)

Since any mathematical operation involving NaN gives NaN, it can
pollute all your results and should be fixed

Floats are most precise close to 0 - avoid using very small and very
large numbers

Strongly recommend reading Floating point demystified for a more
thorough understanding

Stewart Martin-Haugh (STFC RAL) Computing 16/70

https://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html

Testing

Types of tests

> System/integration tests: test that different components work

together, usually at large-scale (e.g. run full reconstruction over a
large dataset)

» Easiest to write: mirror what the code is eventually meant to o
» Regression tests: check that a fixed bug does not reappear
» Harder to write: need to keep track of test cases

» Unit tests: check functionality at ~ function level - should be quick
to run

» Hardest to write: think about what each function does, may need
extra code, fake input data

» Add static analysis to your tests

Writing any tests at all is good, and you get better at writing them with
practice

Stewart Martin-Haugh (STFC RAL) Computing

Unit test example

def squ(x):
return x**2 + 1

def test_squ():
assert squ(42)==1764
test_squ()

#0utput:
Traceback (most recent call last):
File "square.py", line 7, in <module>
test_squ()
File "square.py", line 5, in test_squ
assert (squ(42)==1764)
AssertionError

» This kind of strategy is useful for checking that a change that
shouldn't change the output, doesn't change the output

» Python assert is very useful in general: litter your code with it
> Consider unit testing libraries (e.g. GoogleTest, Python unittest)

Stewart Martin-Haugh (STFC RAL) Computing 18/70

https://docs.python.org/3/library/unittest.html

Random and comprehensive testing

» Testing with truly random inputs hasn't been used much in particle
physics

» But we do run code over large MC and data samples with built-in
randomness

> So we are testing with a random distribution - nature/theory +
systematic uncertainties + detector response

» Fuzz testing is truly random testing, very important for computer

security

Did your life as a software engineer and a mother ever
collide?

Often in the evening or at weekends I would bring my
young daughter, Lauren, into work with me. One day,
she was with me when I was doing a simulation of a
mission to the moon. She liked to imitate me - playing
astronaut. She started hitting keys and all of a sudden,
the simulation started. Then she pressed other keys and
the simulation crashed. She had selected a program
which was supposed to be run prior to launch - when she
was already “on the way” to the moon. The computer
had so little space, it had wiped the navigation data
taking her to the moon. I thought: my God - this could
inadvertently happen in a real mission. I suggested a
program change to prevent a prelaunch program being
selected during flight. But the higher-ups at MIT and
Nasa said the astronauts were too well trained to make

such a mistake. Midcourse on the very next mission -
A Margaret Hamilton in

1969 with t i Apollo 8 - one of the astronauts on board accidentally
g did exactly what Lauren had done. The Lauren bug! It
Photograph: Science created much havoc and required the mission to be

Hlstary tmages/Alamy reconfigured. After that, they let me put the program

Computing

Continuous integration

» Run as many tests as you can for each change you make (i.e. a
merge or pull request)

» Catch problems before they're part of the main codebase
» GitLab Cl, Jenkins, Travis Cl

#example gitlab CI for LaTeX
stages:
- build

build:
image: thomasweise/docker-texlive-full
stage: build
script:
- apt update -y
- apt install -y biber
- make
artifacts:
paths:
- "x.pdf"
expire_in: 1 week

Stewart Martin-Haugh (STFC RAL) Computing

Containers
Useful for many reasons: debugging, versioning, sharing code
» Run a lightweight virtual operating system on top of your real OS
» Similar to a virtual machine
» Easily run Linux programs on Mac, Windows
» A description of an environment that someone else can run
» Can run on the Grid
» Can run Unix v1 (1972)

docker

Stewart Martin-Haugh (STFC RAL) Computing

https://nickjanetakis.com/blog/run-the-first-edition-of-unix-1972-with-docker

Conclusions about correctness

» Have only had time to cover some basics
» Questions?

Now on to speed!

Stewart Martin-Haugh (STFC RAL) Computing

Fast computing

High throughput computing
» Can parallelise and buffer data for later processing
» LHC, SKA - this talk
» Maximise throughput = events/second
Low latency computing
» Pointless or impossible to buffer
» High frequency trading, autonomous vehicles
High performance computing
» Problems that don't parallelise easily - supercomputer
» Climate modelling

» Fast connections between processors, lots of RAM

Stewart Martin-Haugh (STFC RAL) Computing

23/70

CPUs 101

10,000,000
Dual-Core Itanium 2 /
> Moore's Law no "/
a
longer holding (|nte|CPkLIJ Erendlsko) iy,
sources: Intel, Wikipedia, K. Olukotun,

for CPU clock 100,000

speed (since ~ .,?_{

2006) 10,000
» Memory has

fallen behind o0

CPU - big

bottleneck 100

frequently $ X

memory access 1 "

/-‘ .o L A a & r
» More processing 5 R .:/&‘F__._
. 1 : A % ot @Transistors (000) -
power available <. “, ° o Clckpees e
aPower (W)
th rough e @ Pert/Clock (ILP)
I
. o
pa ra I Iel Ism 1970 1975 1980 1985 1990 1995 2000 2005 2010

Source: Herb Sutter

Stewart Martin-Haugh (STFC RAL) Computing

http://www.gotw.ca/publications/concurrency-ddj.htm

CPUs 101

Fast memory is Bus
expensive - -
» Fastest memory
kept in L1 cache,
slower in L2 etc

» Slow memory in
RAM

» Slowest of all is
hard disk

> Cac_he.miss = :
retrieving data LL1d Cache =— CPU Core

from a different
cache

L1i Cache

Source: What Every Programmer Should Know About
Memory

Stewart Martin-Haugh (STFC RAL) Computing

https://www.akkadia.org/drepper/cpumemory.pdf
https://www.akkadia.org/drepper/cpumemory.pdf

Pipelining

» Pipelining allows processors to execute multiple instructions per

clock cycle
[IF [1D | EX [MEM
I | F D |EX wB
o | F | D MEM| WB
IF EX MEM| WB |

ID | EX |MEM| WB |

Five stage Instruction pipeline
» Only works for linear code

» Branching (e.g. if and else) is a problem
» Can't load anything past the branch point

Stewart Martin-Haugh (STFC RAL) Computing 26/70

https://en.wikipedia.org/wiki/Instruction_pipelining

Branch prediction

>
>
>

Module within CPU decides which branch to take (details here)
Allows CPU to pipeline code with branches

Significant penalty if you take an unexpected branch - CPU has to
load new code into pipeline

Solution: remove branches if possible

Unbalance your branches - 50/50 if else is harder to predict than
e.g. 90/10 if else

Sort data (see most popular ever Stack Overflow question)

Stewart Martin-Haugh (STFC RAL) Computing

https://danluu.com/branch-prediction/
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

Parallelism /concurrency

» An entirely parallelisable calculation is referred to as embarrassingly
parallel

> Event generation: every collision has no dependency on the previous
» Simulate each collision on a separate CPU: scale to number of CPUs
available

» Most calculations have a parallel and serial component, which limits
the speedup

Stewart Martin-Haugh (STFC RAL) Computing 28/70

Parallel and serial components

Silly example

» Making a car requires 1000 identical parts: each part takes 1 minute
to make

» The 1000 identical parts must be assembled in a final step: this
takes 60 minutes

Serial path

» 1000 parts assembled by a single worker + final assembly = 1000 +
60 minutes = 1060 minutes

Parallel path

» 1000 parts assembled by different workers simultaneously + car
assembly = 1 + 60 minutes = 61 minutes

Maximum speedup
> 1060/61 = 17.4
No further gains without improving the final assembly (serial part)

» Amdahl’s law turns this kind of reasoning into a formal statement

Stewart Martin-Haugh (STFC RAL) Computing

Parallelism

Flynn's taxonomy (1966)
» SISD (Single instruction, single data) single-threaded operation
> SIMD (Single instruction, multiple data) vector operations
» MISD (Multiple instruction, single data) fairly rare in practice
» MIMD (Multiple instruction, multiple data) multi-threaded operation

Stewart Martin-Haugh (STFC RAL) Computing

Vectorisation /SIMD

» Modern CPUs can execute the same instructions on multiple data
simultaneously

std::array<int, 100> int_array;
for (unsigned int i = 0; i < 100; i++) {
int_array[i] = i*4;

A WN =

}

» Different architectures depending on CPU generation: MMX, SSE,
AVX

» Code generated for one instruction set will not work with another

Stewart Martin-Haugh (STFC RAL) Computing 31/70

Auto-vectorisation

==

HOWOWWLO~NOOAWNHR

» Compiler can generate appropriate vector instructions for loops etc

» Will not always apply it if not beneficial - see backup for an example
where GCC and Clang disagree

#include <array>
#include <iostream>

int main() {
std::array<int, 100> int_array;
for (unsigned int i = 0; i < 100; i++) {

int_array[i] = i*4;
}
std::cout << int_array[10] << std::endl;
return O;

clang++ -msse4.2 -std=c++11 vec.cpp -02 -Rpass=loop-vectorize
vec.cpp:6:2: remark: vectorized loop (vectorization width: 4,
interleaved count: 1) [-Rpass=loop-vectorize]
for (unsigned int i = 0; i < 100; i++) {

#similarly: g++ -std=c++11 vec.cpp -03 -fopt-info-vec

Stewart Martin-Haugh (STFC RAL) Computing

Vectorisation by hand

» Autovectorisation is fragile: re-order your code and it can disappear

» Can write using vector intrinsics: functions that act on arrays of
data and operate accordingly

» Resulting code will not compile on different CPU type (e.g. ARM,
older Intel/AMD)

» More complicated to write

void _mm_2intersect epi32 (__m128i a, __mi28i b, __mmask8* ki1, __mmask8* k2)
void _mm256_2intersect_epi32 (__m256i a, __m256i b, __mmask8 k1, __mmask8* k2)
void _mm512_2intersect_epi32 (__m512i a, __m512i b, __mmask16x k1, __mmask16é% k2)
void _mm_2intersect epi64 (__m128i a, __mi28i b, __mmask8* k1, __mmask8* k2)
void _mm256_2intersect_epi64 (__m256i a, __m256i b, __mmask8* k1, __mmask8* k2)
void _mm512_2intersect_epié4 (__m512i a, _, _mmask8* k1, __mmask8* k2)

__m512i _mm512_4dpwssd_epi32 (__m512i src, __mS12i a0, __m512i al, __m512i a2, __m512i a3,
__m128i * b)

__m512i _mm512_mask_4dpwssd_epi32 (__m512i src, __mmasklé k, __m512i a0, __mS12i al, __ms12i a2,
__m512i a3, __m128i * b)

__m512i _mm512_maskz_4dpwssd_epi32 (__mmask16 k, __m512i src, __m512i 20, __m512i al, __m512i a2,
__m512i a3, __ml128i * b)

__m512i _mm512_ddpwssds_epi32 (__m512i src, __m512i a0, __m512i al, __m512i a2, __m512i a3,
__m128i * b)

__m512i _nm512_mask_4dpwssds_epi32 (__m512i src, __mmask16 k, __m512i a0, __m512i al, __m512i
a2, __m512i a3, __m128i *

mn512_maskz_4dpwssds_epi32 (__mmaskl6 k, __m512i src, __m512i a0, __m512i al, __m512i
a2, __m512i a3, __mi28i * b)

__m512 _mm512_4fmadd_ps (__m512 src, __m512 a0, __m512 al, __m512 a2, __m512 a3, __ml128 * b)
__m512 _mm512_mask_4fmadd_ps (__m512 src, __mmask1é k, __m512 a0, __m512 al, __m512 a2, __m512
a3, __m128 * b)

__m512 _mm512_maskz_4fmadd_ps (__mmask16 k, __m512 src, __m512 a0, __m512 al, __m512 a2, __m512
a3, __m128 * b)

__m128 _mm_4fmadd_ss (__m128 src, __m128 a0, __m128 al, __ml128 a2, __mi28 a3, __m128 * b)
__m128 _mm_mask_4fmadd_ss (__m128 src, __mmask8 k, __m128 a0, __m128 al, __ml128 a2, __mi28 a3,
__m128 * b)

Vectorisation by someone else’'s hand

» Easiest solution: use a library written by an expert
> E.g. for cos(), exp(), atan2()

» CERN VDT
» Intel and AMD mathematical function libraries (recipe in backup)

» For matrix algebra
> Eigen

Stewart Martin-Haugh (STFC RAL) Computing

https://github.com/dpiparo/vdt
http://eigen.tuxfamily.org/index.php?title=Main_Page

Multiple instructions, multiple data (MIMD)
MIMD: multi-threading
» A thread is a sub-program controlled by your main program
» Operating system decides when and on which CPU they run

» Thread order is non-deterministic: can lead to difficult bugs
> Race conditions, deadlocks, irreproducible output

» Usually one thread per CPU
» Swapping between threads on one CPU: “hyper-threading”

Process

Time

v

from Wikipedia

Stewart Martin-Haugh (STFC RAL) Computing

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

Threading example with OpenMP

#include <iostream>
#include <omp.h>
int main() {
#pragma omp parallel num_threads(4)
{
int thread = omp_get_thread_num() ;
int total = omp_get_num_threads();
std::cout << "Greetings from thread " << thread << " out of "
<< total << std::endl;

}
std::cout << "parallel for ends." << std::endl;
return O;

}

g++ —-fopenmp test_omp.cpp && ./a.out
Greetings from thread 1 out of 4
Greetings from thread O out of 4
Greetings from thread 3 out of 4
Greetings from thread 2 out of 4

» Must program in a way that avoids dependence on thread order or
data local to each thread

Stewart Martin-Haugh (STFC RAL) Computing 36/70

Threading libraries

» Intel Threading Building Blocks: used by ATLAS, CMS, LHCb for
multi-threaded data processing

» OpenMP is best for simpler situations with limited relationships
between threads
» Other frameworks exist: e.g. HPX is gaining some momentum

Many more details on threading available in Graeme Stewart's
concurrency lectures (with worked examples)

Stewart Martin-Haugh (STFC RAL) Computing

https://github.com/STEllAR-GROUP/hpx
https://github.com/graeme-a-stewart/cpp-concurrency/
https://github.com/graeme-a-stewart/cpp-concurrency/

Brief digression on GPU programming

2

>
>
>

Initially designed for graphics calculations: matrix and vector
operations
Tailored towards embarrassingly parallel problems
Increasingly used for scientific applications, machine learning
Several competing options for programming
> CUDA for NVidia
» HIP for AMD
» OpenCL, SYCL: multi-platform
HEP software moving towards these, but difficult/labour-intensive to
port
Increasingly popular for supercomputers etc: dragging HEP that way

Stewart Martin-Haugh (STFC RAL) Computing 38/70

Parallelism conclusions

» Vectorisation and multi-threading are harder to work with than
single-threaded programming

> But necessary if you want to get the highest possible performance

» Even if you don’t need the best performance, you can still apply
some of this through libraries

Next topic: measuring performance

Stewart Martin-Haugh (STFC RAL) Computing 39/70

Measuring runtimes

» Basic solution: time command
» user = time spent in your code
> sys = time spent in (Linux) kernel code
» real = sum of user + sys = Walltime
>time factor 1234567890987654321123456789333333333

1234567890987654321123456789333333333: 3 3 3 23 43 27062723775121
1708375824282413291

real Om0.363s
user Om0.321s
sys Om0.000s

» You care about real, but you can only affect user

> If you're worried about system calls, you can use strace to see which
ones are used (see e.g. Julia Evans strace zine)

Stewart Martin-Haugh (STFC RAL) Computing

http://jvns.ca/strace-zine-v2.pdf

Walltime

" Royal
Observatory
Greenwich

» Walltime is the most important
number for profiling, but also
the most difficult to measure
accurately

» Varies with CPU

» Some variation from
operating system

» Penalty for running in a
virtual machine

rt Martin-Haugh (STFC RAL) Computing

Measuring runtimes

» Next level in complication: debugger
» Start your program, then randomly interrupt it a few times and see
which function it's in

~C
Program received signal SIGINT, Interrupt.
0x00007£8d81f09b55 in SiSpacePointsSeedMaker_ ATLxk::production3Sp() ()
from libSiSpacePointsSeedTool_xk.so
(gdb) bt
#0 0x00007£8d81£09b55 in production3Sp() ()
from libSiSpacePointsSeedTool_xk.so
#1 0x00007f8d81fObaaa in production3Sp() ()
from libSiSpacePointsSeedTool_xk.so
#2 0x00007£8d81f0bcOb in find3Sp() (O
from libSiSpacePointsSeedTool_xk.so

» This is the callstack

» If your program spends 90% of its time in function X, you have a
90% chance of catching it

Stewart Martin-Haugh (STFC RAL) Computing 42/70

Sampling profilers

» Congratulations, you've made a basic sampling profiler!

» Sample = interrupt, look at the call stack

~C

Program received signal SIGINT, Interrupt.

0x00007£8d81£09b55 in costlyFunction() ()
from costlyNumerics.so

(gdb) bt

#0 0x00007£8d81£f09b55 in costlyFunction() ()
from costlyNumerics.so

#1 0x00007£f8d81f0Obaaa in frameworkCode() ()
from frameworkCode.so

#2 0x00007£8d81f0bcOb in main() ()
from program.so

Stewart Martin-Haugh (STFC RAL) Computing

Practical gdb

> Let's try it out

wget https://raw.githubusercontent.com/StewMH/OptimisationWorkshop/
master/Exercise_1/Exercise_1.cpp

gt++ Exercise_1.cpp -03 -g -o Exercise_1

gdb ./Exercise_1

run

Ctrl-C

c

Stewart Martin-Haugh (STFC RAL) Computing

Cost

> costlyFunction() (top of the stack trace): where program was when
halted

> “Self cost”

» frameworkCall(), main(): call the function doing the work
> “Total cost”

» Self cost < total cost

» Focus optimisation efforts on functions with highest self-cost

#0 0x00007£8d81f09b55 in costlyFunction() ()
from costlyNumerics.so

#1 0x00007f8d81f0baaa in frameworkCall() ()
from frameworkCode.so

#2 0x00007£8d81f0bcOb in main() ()
from program.so

» Some would argue this is the one true profiler

Stewart Martin-Haugh (STFC RAL) Computing

https://stackoverflow.com/questions/375913/how-can-i-profile-c-code-running-in-linux/378024#378024

Sampling profilers
» Automate the call stack sampling procedure, generate a call graph
(can be nicely visualised in KCacheGrind)
» gperftools, Intel VTune, igprof
» Can also assign cost to lines of code (but take with a pinch of salt)

Computing

VTune

» Intel VTune is an excellent tool
» Free to download, if you register with Intel

<no

% Basic Hotspots Hotspo

28 Collecti & Analysis Target

Analysis Type

K Summary

change) (

< B

& Caller/Callee

current project> - Intel VTune Amplifier (on Ixplus104.cern.ch)

INTEL VTUNE AMPLIFIER XE 2017

CPU Time: Total CPU Time: Total
Function Effective Time by Utilization B s |ove. Callers Effective Time by Utilizatior
@ 1dle @ Poor ([0k @ideal @Over . | Time| @dle @Poor 00k @ Ideal @ Ov:
builtin_execfile 26.6%| 0.6% 0.0%| [¥HLT:TrigSteer::execute 99.2% [
<module> 26.6% I 0.6% 0.0%) P Algorithm :sysExecute 99.2% I
<module> 26.7% [0.6% 0.0%|
<module> 22.7% [0.5% 0.0%|
<module> 22.2% |H 0.5% 0.0%|
generate 17.3% I 0.5% 0.0%)
PyEval_EvalCodeEx 26.5% (I 0.4% 0.0%|
PyThread_release_lock 0.0%| 0.4% 0.0%)
getChainDef 14.0% B 0.3% 0.0%)
unction<StatusCode (ITrigE ventLoopMgr+)>: 47.0% NN 0.3% 0.0%|
0.3% 0.0%
0.3% 0.0% Selected 1 row(s):
0.3% 0.0%| J< e
0.3% 0.0%
B Callees Effective Tim
,_python_value< 0.3% 0.0% Qldie @ Poor 0 Ok
aller_py_function_impl<boost::python:: 0.3% 0.0%
aller_arity<(unsigned int)3>impl<efor 0.3% 0.0%
process_overloads::non_void_returm_typesigen<boost:mpl:ivet 0.3% 0.0%
HLTTestApps::process 0.3% 0.0%
namespace): Pr r10p) 0.3% 0.0% s i
pec:Psciprocess 0.3% 0.0%| ig::TrigNtExecTool::Fill
operator() 0.3% 0.0%| rigNtRobsTool
run 0.3% 0.0% :ResultBuilder::h tExecute
_run_aux 0.3% 0.0%
process 0.3% 0.0%
I T———— PECARY.CA
Selected 1 row(s): 34.2% 0.3% 0.0% Selected 1 row(:
»[Ol o ol

https://software.intel.com/en-us/intel-vtune-amplifier-xe/

Instrumentation

>

High-level languages (e.g. C++) have inbuilt timing facilities:

using namespace std;
using namespace std::chrono;

auto

start_time = high_resolution_clock::now();

doSomething();

auto
cout

end_time = high_resolution_clock::now();

<< "Time: " << duration_cast<microseconds>(end_time - start_time).
count() << endl;

Known as “instrumenting"” your code

Useful, but has some cost - don't e.g. try to measure within tight
loops

Google Benchmark builds this into a useful framework to benchmark
functions

Stewart Martin-Haugh (STFC RAL) Computing 48/70

https://github.com/google/benchmark

Emulation

> Callgrind tool (part of Valgrind?)

» Emulates a basic modern CPU, with level 1, level 2 caches, branch
prediction (somewhat configurable)

» Runs slowly

v

Information about cache misses and branch misprediction
» Produces output suitable for KCacheGrind

2Very useful suite of tools for debugging and profiling
Stewart Martin-Haugh (STFC RAL) Computing 49/70

http://valgrind.org/
https://danluu.com/branch-prediction/
https://danluu.com/branch-prediction/

Instrumentation

» perf is now the gold standard - sampling and instrumenting

> Part of Linux kernel (best results with new kernels)
> Monitor performance monitoring counters (PMCs)

» VTune also has access to these

» Some features require root access

perf stat -d program

10 152 172 182 cycles:u
(49,86%)
14 584 154 073 instructions:u
insn per cycle (62,43%)
2 318 605 154 branches:u
sec (74,93%)
44 768 463 branch-misses:u
all branches (75,00%)
4 116 170 377 Li-dcache-loads:u
sec (74,18%)
167 821 302 Li-dcache-load-misses:u
all Li-dcache hits (25,06%)
45 252 042 LLC-loads:u
sec (24,89%)
8 794 669 LLC-load-misses:u

Stewart Martin-Haugh (STFC RAL)

Computing

#

#

#

78

139

1

50/70

3,451
1,44

8,130
1,93%
9,150
4,08%

5,382

GHz

Profiling thoughts

» It's a cliche, but the biggest improvements usually come from
changing algorithm, not minor changes to code

» Many profilers available

» Measure and benchmark

Stewart Martin-Haugh (STFC RAL) Computing

Compiler optimisation

» Standard compilers (GCC, clang) can do a lot of optimising for you!
» -O0 = no optimisations applied
> 01, -0O2 = basic, safe optimisations applied
> -03 = expensive optimisations (take a long time, may actually make
code slower) applied

» 02 is a good optimisation reference level - try also O3
> Measure at 02/03 before optimising by hand

> Fine-tuned optimisation options available - check GCC/clang
documentation for details

Stewart Martin-Haugh (STFC RAL) Computing 52/70

Optimisation example

» GCC and Clang compilers can reduce square example3 down to
something sensible

int square(int n)

{
int k = 0;
while (true)
{ int square2(int n)
if (k == n*n) - {
{ return n*n;
return k; }
}
k++;
}
}

» Optimising compilers are amazing - you only need to care when
automatic optimisation fails

3NB: Don’t write a square function, just square numbers in the code

Stewart Martin-Haugh (STFC RAL) Computing

https://godbolt.org/g/fpbDGs

CPU optimisation

» Once you've identified which part of your code takes the most time,
you can start optimising

> Strategies are somewhat language-dependent, but some general
points always true

» Compiled languages (C++, Fortran) faster than interpreted
(Python, Ruby)

» Standard libraries (FFTW, BLAS, Eigen) likely faster than your own
code - don't reinvent the wheel!

Stewart Martin-Haugh (STFC RAL) Computing

Floating point operations

» Addition is faster than multiplication (usually compiler will do this
for you if needed)

» Multiplication is faster than division

y=x/5.0; //Bad
y=x*0.2; //Good

» Rearrange calculations to minimise number of operations

» Compiler won't necessarily do this for you (floating point rules)

y = d¥x*x*kx + c*kx*x + b*x + a; //Bad
y = x*x(x*(x*d+c)+b) + a; //Good

» Some of these rearrangements lose clarity

» Only do this if it's genuinely a bottleneck

Stewart Martin-Haugh (STFC RAL) Computing

Mathematical functions

» Square root is slow
» Trigonometric functions, exp, log, are slow

» Consider using an optimised library (see e.g. VDT)
» Trigonometric identities can help you

» For linear algebra, definitely use a library (e.g. Eigen)

Stewart Martin-Haugh (STFC RAL) Computing

http://iopscience.iop.org/article/10.1088/1742-6596/513/5/052027/pdf
http://eigen.tuxfamily.org/

Loops

» Don't recalculate within loops: move code outside

» Consider storing frequently calculated values

for (i = 0; i < 50; i++) {
for (j = 0; j < 50; j++) {
x = sin(5*i) + cos(6%j);
//Can move sin() into earlier loop
}
}

Stewart Martin-Haugh (STFC RAL) Computing

Algorithmic complexity

> If possible, stick to standard algorithms (e.g. C++ std::sort) instead
of writing your own

» If the algorithm is a hotspot, consider trying out different algorithms
(note, flashing lights)

Stewart Martin-Haugh (STFC RAL) Computing

https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg

Data structures

» Worth thinking about which data format fits your problem

» In C++, std::vector is probably a good fit (but make sure you
reserve enough size in advancel!)

» std::map and std::unordered_map are also useful

Stewart Martin-Haugh (STFC RAL) Computing

Points to remember

» Profiling and reasoning about code cannot tell you if you're using
the wrong algorithm for your problem

» Writing your own implementation of something is an excellent way
to learn, even if you never use it

» Correctness must come before optimisation

Stewart Martin-Haugh (STFC RAL) Computing

Memory 101

Programs have access to two pools of memory: stack and heap
> Stack:
» Small amount of memory associated with program
» Fast to access - can be e.g. in CPU L1 cache
> E.g. variables in a function

int f(int x) {

int i = 55;

return x + 1i;
}

» Heap:

> Slower to access than stack

» Can be dynamically allocated

> If you don’t free up memory, this is where it leaks

» All the RAM available on the machine (if it runs out, it will use hard
drive - v slow!)

int g(int x) {

int* i = new int(55);//0n heap

return x + *i;

//Memory for i not given back to 0S - leak
}

Stewart Martin-Haugh (STFC RAL) Computing

Memory profiling

» Using too much memory is bad for two reasons

» Eventually you run out (e.g. memory leak)

> Allocating memory has a significant CPU cost - higher if your data
doesn't fit in e.g. L1 cache

> A single large allocation is cheaper than several small allocations

» Better to access memory in order - data-locality
» Appropriate data structures help with this

Stewart Martin-Haugh (STFC RAL) Computing 62/70

Exercise 3: the memory hog

» Exercise 3 is a program that creates a C++ vector and fills it with
some data

» Vectors are dynamically allocated - once you get to the end it asks
for 2x as much storage space

> Better to pre-reserve data: vec.reserve(maxlen) so it only asks
for as much space as needed

» Measure effect using Valgrind massif tool

P

Aartin-Haugh (STFC RAL) Computing

Exercise 3: the memory hog

ms_print massif.out.3655

Command: ./Exercise_3 --detailed-freq
Massif arguments: (none)
ms_print arguments: massif.out.3655

6®pe06°

@

0 217.9

Stewart Martin-Haugh (STFC RAL) Computing

Massif visualizer

massif-visualizer massif.out.3655

Popen | @ cClose <> ShortenTemplates | i - I selectpeak snapshot o |
massifout 3653 MassifData ®
mory consumption of /Exere
N S50 T3 ot nopeie 08 Snapshot 70

otal Hemory Heap Consumption
lin 1 place, below massif's threshold
222 (in /usr/Uib/x86_64-Linux-gnu/Libstdcs+.50.6.0.21)
Jstd: svector<A, std: :allocator<> >:

732 Ki8:Snapshot #17
» 732 ki Snapshot 715

755 Kie: Snapshot #20
» 755 ki Snapehot 721
7£0KiB: Snapshot #22
80.0K1B: Snapshot #23
» 80.0Kis: Snapshot 124
77.0Ki8: Snapshot #25
5:Snapshot 726

iobytes

memory heap size n

o 31 MiB: Snapshat #52
timeini 4 Min- enanchot 0
Gustom Alloators | s Data

Massif visualizer - more realistic example

massif-visualizer massif.out.10588

Popen @ Close <> shortenTemplates | - P Selectpeak snapshot 0

masifouc 10588 MassirData aw

Peak of 2.3 G at snapshot #23
> 504.1 MiB:Snapshot

[Total Henory Heap Consumption 525.0 ib: Snapshot
cora ributelist::Attributelist(c. e T St
Wcoral: :Attributelist: Attributelist(c.. . R
Bclang: :FileHanager : :getFile(Llvn: :Str. 706.2 M: Snspshot
Xx11::basic stringechar, std:.

“ObjectAlloc(unsigned long)

Bctang: :Decl: :operator new(unsigned Lo
Elxercesc 3 1::MenoryManagerInpl. :alloc.
DLtun: :BumpPt Al Locator InplelLyn: :Hall.
v

: tUser: soperator new(unsigned lon.

Basctrestze
<shorts, sta
4
5
s N
R ey
330 st
[T8 2.1 GiB: Snapshot #35
156
-
52

Custom Alloca..._| pssifD.

Different allocators

» Your program will not just receive the memory it asks for when it
asks for it

» Allocator decides how much to request at a time and how much
should be contiguous

> glibc used by default

» Others available, particularly jemalloc (Facebook) and tcmalloc
(Google)

» No need to recompile, just preload

» May work better for your memory access pattern than glibc - free
speedup!

LD_PRELOAD=/usr/1lib/libtcmalloc.so0.4 ./my_program

Stewart Martin-Haugh (STFC RAL) Computing

Finding big allocations

» Scenario: your program is running out of memory

» How to track down large (e.g. 1 GB) allocations?

» tcmalloc provides a printout when this happens
tcmalloc: large alloc 2720276480 bytes == 0x73eda000 @

tcmalloc: large alloc 2720276480 bytes == 0x2a96£0000 @
tcmalloc: large alloc 2720276480 bytes == 0x34b932000 @

» Add a breakpoint at (anonymous namespace) : :ReportLargeAlloc(
unsigned long, void*)*

“Note that -enable-large-alloc-report must be added to ./configure in recent
releases of tcmalloc
Stewart Martin-Haugh (STFC RAL) Computing 68,/70

Heap profilers

> jemalloc and tcmalloc both come with low-overhead profilers to
analyse which functions allocate most memory

» Output can be interpreted much as with a call-graph

» Best overall is heaptrack - see e.g. this ATLAS memory fix that it

signposted
HLT::NavigationCore::deserialize
2477 %
1197 22...
1196 17...
188 4026... FJ110567...
F1110567...

Stewart Martin-Haugh (STFC RAL) Computing

https://gitlab.cern.ch/atlas/athena/-/merge_requests/43251

Memory profiling thoughts

» Memory profiling is more difficult than CPU profiling - tools less
advanced/convenient

» But improving all the time

» Can make a big difference if you're using a lot of memory

Stewart Martin-Haugh (STFC RAL) Computing

Profiling and optimisation conclusions

» A small amount of profiling/optimisation knowledge can
dramatically improve your application performance

» Profiling is more important than optimisation
» Advanced techniques useful once you've done the easy bits

» More detail and worked examples in workshop

Stewart Martin-Haugh (STFC RAL) Computing

https://github.com/StewMH/OptimisationWorkshop

Conclusions

>
>

>

A lot to cover in a single (long) lecture

Continuing developments, particularly in concurrency and memory
safe programming

Good debugging and profiling skills can help you in a lot of areas
throughout your PhD

Particularly for C++, books (e.g. by Herb Sutter, Scott Meyers)
and videos (e.g. from CppCon)

Stewart Martin-Haugh (STFC RAL) Computing

https://www.youtube.com/channel/UCMlGfpWw-RUdWX_JbLCukXg

Backup: Meltdown and Spectre

> Security vulnerabilities in branch predictors: discovered January 2018
» Allow an attacker to read information from a non-executed branch
» More details here, here and here

» Fixes will slow down certain types of program

Stewart Martin-Haugh (STFC RAL) Computing 73/70

https://www.redhat.com/en/blog/what-are-meltdown-and-spectre-heres-what-you-need-know
https://www.youtube.com/watch?v=IPhvL3A-e6E
https://www.youtube.com/watch?v=_f7O3IfIR2k

Backup: vec2.cpp

©OO~NOOU A~ WN -

//Clang 6.0 thinks it's not worth it to vectorise, GCC 7.5 thinks it is
//g++ -msse4.2 -std=c++11 vec2.cpp -03 -fopt-info-vec

//clang++ -msse4.2 -std=c++11 vec2.cpp -02 -Rpass-missed=loop-vectorize
#include <array>

#include <iostream>

struct particle {
float x; float y; float z; float t;
};

int main() {

std::array<particle, 100> part_array;

for (unsigned int i = 0; i < 100; i++) {
particle part;
part.x = i; part.y = i*2; part.z = i*3; part.t = ix4;
part_array[i] = part;

}

std::cout << part_array[10].x << std::endl;

}

clang++ -msse4.2 -std=c++11 vec2.cpp -02 -Rpass-missed=loop-vectorize
vec2.cpp:14:2: remark: the cost-model indicates that vectorization is
not beneficial [-Rpass-missed=loop-vectorize]
for (unsigned int i = 0; i < 100; i++) {

Stewart Martin-Haugh (STFC RAL) Computing

