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•Lecture inherited from Monika Wielers 

• Many ideas, material also borrowed from Andrea Venturi, Francesca Pastore and other  TDAQ 

colleagues! 

•
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1. Introduction 

1.1. What is DAQ? 

1.2. System architecture 

2. Basic DAQ concepts 

2.1. Digitization, Latency 

2.2. Deadtime, Busy, Backpressure 

2.3. De-randomization 

3.  Scaling up 

3.1. Readout and Event Building 

3.2. Buses vs Network 
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•Data AcQuisition (DAQ) is 

• the process of sampling signals  

• that measure real world physical conditions  

• and converting the resulting samples into digital numeric values 

that can be manipulated by a computer
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•Data AcQuisition (DAQ) is 

• the process of sampling signals  

• that measure real world physical conditions  

• and converting the resulting samples into digital numeric values 

that can be manipulated by a computer

•Ingredients: 

• Sensors: convert physical quantities to electrical signals 

• Analog-to-digital converters: convert conditioned sensor signals to digital values 

• Processing and storage elements
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•DAQ is an heterogeneous field (a.k.a. dark arts) 

• with boundaries not well defined 

•An alchemy of 

• physics  

• electronics  

• computer science 

• hacking  

• networking  

• experience 

•Where money and manpower matter as well
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What is DAQ?
[Real life]
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•Gather data produced by detectors 

• Readout 

•Form complete events  

• Data Collection and Event Building 

•Possibly feed extra processing levels  
•Store event data  

• Data Logging 

•Manage operations 

•  Control, Configuration, Monitoring  
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DAQ duties

Data Flow
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•Interesting physics data typically a small fraction of sampled signals 

• really, Really, REALLY SMALL 

•Logging all recorded data is unpractical (and costly) 

• sometimes technically unfeasible 

•Online data reduction before logging becomes imperative 

•That’s the job of the Trigger! 

• DAQ and Trigger deeply entwined 

‣ often referred as TDAQ 

• All about the Trigger systems in the next lecture 
• Dr. Will Panduro 

• All you wanted to know about trigger and never dared to ask!
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•Selects interesting events AND rejects boring ones, in real time 

• Selective: efficient for “signal” and resistant to “background” 

• Simple and robust: Must be predictable at all times! 

• Fast: Late is no better than never 

•With minimal controlled latency 

• time it takes to form and distribute its decision 

•The implementation of “Trigger” has significantly evolved in the past decades 

• LEP: trigger the sampling of (slow) detector 

• LHC: trigger the readout of on-detector buffers (Level-1) or trigger logging to permanent storage 

(High Level Trigger - HLT)
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Trigger in a nutshell
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•Trigger path 
• From specific detectors to trigger logic 

• Continuous streaming of trigger data 

• Dedicated connections 

•Data path 
• From all the detectors to readout   

• Transmission on positive trigger decision

Trigger and DAQ 

Trigger
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DAQ
Triggered: data is readout from detector only when a trigger signal is raised

12

Readout: Triggered vs Streaming

trigger



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition

DAQ
Triggered: data is readout from detector only when a trigger signal is raised

Streaming: detector pushes all its data and the downstream DAQ must keep the pace 
▶︎ data reduction still takes place, but post readout 
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•FPGAs have become becoming TDAQ’s 

bread & butter 

• Signal processing, data formatting, 

natively parallel tasks (e.g. pattern 

recognition), machine learning, ...   

• Covered in  yesterday’s 
• FPGA Programming Lecture -  

Dr. Kristian Harder
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Field Programmable Gate Arrays
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Configuration 
▶︎ Ensemble of detectors, trigger and DAQ 

parameters defining the system behaviour 
during data taking 

Control 
▶︎ Orchestrate applications participating to  

data taking 
▶︎ Via distributed Finite State Machine 

Monitoring 
▶︎ Of data taking operations 

• What is going on?  
• What happened? 
• When? 
• Where?
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The glue of your experiment
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Outline

1. Introduction 

1.1. What is DAQ? 

1.2. System architecture 

2. Basic DAQ concepts 

2.1. Digitization, Latency 

2.2. Deadtime, Busy, Backpressure 

2.3. De-randomization 
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3.1. Readout and Event Building 
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with a toy model



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition

•Eg: measure temperature at a fixed frequency 

• Clock triggered 

•ADC performs analog to digital conversion, digitization (our front-end electronics) 

• Encoding analog value into binary representation 

•CPU does  

• Readout, Processing, Storage

20

Basic DAQ: periodic trigger
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•System clearly limited by the  

time  to process an “event” 

• ADC conversion +  

CPU processing +  

Storage  

•The DAQ maximum sustainable  

rate is simply the inverse of , e.g.:  

• E.g.: 𝜏 = 1 ms   R = 1/𝜏 = 1 kHz

τ

τ
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TRIGGER
•Events asynchronous and unpredictable 

• E.g.: beta decay studies 

•A physics trigger is needed 

• Discriminator: generates an output digital signal 

if amplitude of the input pulse is greater than a 

given threshold 

•NB: delay introduced to compensate for the  

trigger latency  

• Signal split in trigger and data paths 

22
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•Events asynchronous and unpredictable 
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TRIGGER
•Events asynchronous and unpredictable 

• E.g.: beta decay studies 

•A physics trigger is needed 

• Discriminator: generates an output digital signal 

if amplitude of the input pulse is greater than a 

given threshold 

•NB: delay introduced to compensate for the  

trigger latency  

• Signal split in trigger and data paths 
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•Stochastic process 

• Fluctuations in time between events 

•Let's assume for example 

• physics rate  = 1 kHz, i.e.  = 1 ms  

• and, as before,  = 1 ms

f λ
τ

TRIGGER
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•Stochastic process 

• Fluctuations in time between events 

•Let's assume for example 

• physics rate  = 1 kHz, i.e.  = 1 ms  

• and, as before,  = 1 ms
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•If a new trigger arrives when the system is  

still processing the previous event 

• The processing of the previous event  

can be disturbed/corrupted

TRIGGER

29

The system is still processing

Processing

ADC

disk

𝝉 
= 

1 
m

s

start

interrupt

delay

What if a trigger happens when 
the system is busy processing 
the previous event

Time between events



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition

•For stochastic processes, our trigger and daq system needs to be able to: 

• Determine if there is an “event” (trigger) 

• Process and store the data from the event (daq) 

• Have a feedback mechanism, 

to know if the data processing pipeline  

is free to process a new event: 

busy logic

30

Thinking…
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TRIGGER•The busy logic avoids triggers while the system 

is busy in processing 
•A minimal busy logic can be implemented with  

• an AND gate  

• a NOT gate 

• a flip-flop 
‣ bistable circuit that changes state (Q) by signals 

applied to the control inputs  (SET, CLEAR)
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TRIGGER•The busy logic avoids triggers while the system 

is busy in processing 
•A minimal busy logic can be implemented with  

• an AND gate  

• a NOT gate 

• a flip-flop 
‣ bistable circuit that changes state (Q) by signals 

applied to the control inputs  (SET, CLEAR)
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TRIGGER

•Start of run 

• the flip-flop output is down (ground state)  

• via the NOT, one of the port of the AND gate is 

set to up (opened)  

•i.e. system ready for new triggers
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 

• The flip-flop is flipped 

• One of the AND inputs is now steadily down 

(closed) 

•Any new trigger is inhibited by the AND gate 

(busy)
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 

• The flip-flop is flipped 

• One of the AND inputs is now steadily down 
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 

• The processing is started 
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TRIGGER
•If a trigger arrives, the signal finds the AND gate 

open, so: 

• The ADC is started 
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TRIGGER

•At the end of processing a ready signal is sent 

to the flip-flop 

• The flip-flop flips again 

• The gate is now opened 

• The system is ready to accept a new trigger 

•i.e. busy logic avoids triggers while daq  

is busy in processing 

• New triggers do not interfere w/ previous 

data 
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•So the busy logic protects electronics  
•from unwanted triggers 

• New signals are accepted only when  

the system in ready to process them 

•What (average) DAQ rate can be achieved now? 

• How much we lose with the busy logic?  

•Reminder: with periodic triggers and  = 1 ms the limit was 1 kHzτ

39

Deadtime and efficiency
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•Definitions  

•  : average rate of  

physics (input) 

• : average rate of  

DAQ (output) 

•  : deadtime, needed to process an event,  

without being able to handle other triggers 

• probabilities: P[busy] = ;   P[free] =  

•Therefore: 
•

f

ν

τ

ντ 1 − ντ

40

Deadtime and efficiency

ν = fP[ free] ⇒ ν = f(1 − ντ) ⇒ ν =
f

1 + fτ
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•Definitions  

•  : average rate of  

physics (input) 

• : average rate of  
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without being able to handle other triggers 

• probabilities: P[busy] = ;   P[free] =  

•Therefore: 
•

f

ν

τ

ντ 1 − ντ

43

Deadtime and efficiency

ν = fP[ free] ⇒ ν = f(1 − ντ) ⇒ ν =
f

1 + fτ



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition

•Due to stochastic fluctuations  

• DAQ rate always < physics rate 

• Efficiency always < 100%  

 

  

•So, in our specific example 

• Physics rate 1 kHz 

• Deadtime 1 ms

44

Deadtime and efficiency
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1
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•In order to obtain  100% ( i.e.:  )  →   →  

• E.g.: 99% for  = 1 kHz  →   < 0.01 ms →  > 100 kHz 

• To cope with the input signal fluctuations,  

we have to over-design our DAQ system by a factor 100!  

•How can we mitigate this effect?

ϵ ≃ ν ≃ τ fτ ≪ 1 τ ≪ λ
ϵ ≃ f τ 1/τ

Input frequency (Hz)

Eff
ic

ie
nc

y

Input frequency (Hz)

O
ut

pu
t F

re
qu

en
cy

 (H
z)
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•What if we were able to make the system more 

deterministic and less dependent on the arrival time of our 

signals? 

• Then we could ensure that events don’t arrive when the 

system is busy 

• This is called de-randomization 

•How it can be achieved?  

• by buffering the data (introducing a holding queue where 

it can wait to be processed)

De-randomization

Inter-arrival  
time distribution

ms

ms

Data access  
time distribution

46
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•Efficiency vs traffic intensity for different queue depths 

• ρ ≪ 1: 	 the output is over-designed ( ) 

• ρ > 1: 	 the system is overloaded ( ) 

• ρ ~ 1: 	 using a queue, high efficiency obtained even w/ moderate depth 

•Analytic calculation possible for very simple systems only 

• Otherwise MonteCarlo simulation is required 

τ ≪ λ

τ > λ

48
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•Input fluctuations can be absorbed and 

smoothed by a queue  

• A FIFO can provide a ~steady and  

de-randomized output rate 

• The effect of the queue depends on its depth   

•Busy is now defined by the buffer occupancy 

• Processor pulls data from the buffer at fixed 

rate, separating the event receiving and data 

processing steps

TRIGGER

49
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•The FIFO decouples the low latency front-end 

from the data processing 

• Minimize the amount of “unnecessary” fast 

components 

•~100% efficiency w/ minimal deadtime 

achievable if 

• ADC can operate at rate  

• Data processing and storage 

operate at a rate   

•Could the delay be replaced with a “FIFO”? 

• Analog pipelines, heavily used in LHC DAQs

≫ f

∼ f

TRIGGER
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•Do we need de-randomization buffers also in 

collider setups? 

• Particle collisions are synchronous 

• But the time distribution of triggers is 

random: interesting events are 

unpredictable 

•De-randomization still needed 
•More complex busy logic to protect buffers 

and detectors 

• Eg: accept n events every m bunch crossings 

• Eg: prevent some dangerous trigger patterns 

TRIGGER

53
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abort
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Outline

1. Introduction 

1.1. What is DAQ? 

1.2. System architecture 

2. Basic DAQ concepts 

2.1. Digitization, Latency 

2.2. Deadtime, Busy, Backpressure 

2.3. De-randomization 

3.  Scaling up 

3.1. Readout and Event Building 

3.2. Buses vs Network 

4. DAQ Challenges at the LHC
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•Adding more channels requires a hierarchical structure committed to the data handling and 

conveyance

55
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Adding more channels
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Processing Processing
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Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction 
data formatting 
data buffering

event assembly 
event buffering

event rejection 
event buffering

file storage 
file buffering

data digitization 
data buffering

•Buffering usually needed at every level 

• DAQ can be seen as a multi level buffering system 
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Backpressure

ADCADCADC

storage

Processing

Processing
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Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)
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Backpressure
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Backpressure
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storage
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N channels N channels N channels
TRIGGER
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•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)

• Up to exert busy to the trigger 

system 

● Debugging: where is  
the source of back-pressure? 
‣ follow the buffers occupancy via the 

monitoring system 
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Backpressure
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•If a system/buffer gets saturated  

• the “pressure” is propagated upstream (back-pressure)

• Up to exert busy to the trigger 

system 

● Debugging: where is  
the source of back-pressure? 
‣ follow the buffers occupancy via the 

monitoring system 

Who’s guilty of  
back-pressure 
in this case?



page Alessandro TheaHEP Advanced Graduate Lectures - Data Acquisition66

Building blocks

ADCADCADC

storage

Processing

Data Collection

Processing Processing

N channels N channels N channels
TRIGGER

ADC ADCADC ADCADCADC

FARM FARM…FARM

•Reading out data or building events out of many channels requires many components

In the design of our hierarchical data-

collection system, it’s convenient to 

define “building blocks” 

‣ Readout crates 
‣ HLT racks 
‣ event building groups 
‣ daq slices
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Front End electronics
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Front End electronics
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Readout Boards (Counting Room)
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Farm (@surface)
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•How to organize interconnections inside the building blocks and between building blocks? 

• How to connect data sources and data destinations? 

• Two main classes: bus or network

71

Readout Topology

data sources

data processors

bus

bus bus network
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•Devices connected via a shared bus 

• Bus → group of electrical lines 

•Sharing implies arbitration 

• Devices can be master or slave 

• Devices can be addresses (uniquely 

identified) on the bus 

•E.g.: SCSI, Parallel ATA, VME, PCI … 

• local, external, crate, long distance, ...

72

Buses

Select Line

Data Lines

MASTERSLAVE

Device 
1

Device 
2

Device 
3

Device 
4
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• I2C 

• SPI 

• UART 

• PCI express  

• VME 

• μTCA  

• ATCA

73

Bus examples (some)
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Bus facts

•Simple :-) 

• Fixed number of lines (bus-width) 

• Devices have to follow well defined interfaces 

‣ Mechanical, electrical, communication, … 

•Scalability issues :-( 
• Bus bandwidth is shared among all the devices 

• Maximum bus width is limited 

• Maximum number of devices depends on bus length 

• Maximum bus frequency is inversely proportional to the bus length 

• On the long term, second order “effects” may limit the scalability  

of your system
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Bus facts

Some second order “effects”
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•All devices are equal (peers) 

• They communicate directly with  

each other via messages 

‣ No arbitration 

‣ Bandwidth guaranteed 

• Not just copper: optical, wireless 

•Eg: Telephone, Ethernet (1G, 10G, 100G, 400G), …

76

Networks
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•In switched networks, switches move 

messages between sources and 

destinations 

• Finds the right path between endpoints 

•How congestions (two messages with the 

same destination at the same time) are 

handled? 

• The key is .... buffering

77

Networks
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Networks

Cable management is still a thing.
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2835×2835 bunches 
in the LHC ring

1011 protons / bunch

≤30 pp collisions  
per bunch crossing 
(BC) 

N parton-parton 
collisions / pp collision 

Complex final-states 
in every parton-parton 
collision.

Ecms = 14 TeV 
L =10 34 /cm2 s 

BC clock = 40 MHz    

LHC and its products

Design  
parameters

•Interesting processes extremely rare,  

high Luminosity is essential 

• Close collisions in space and time 
‣ Large proton bunches (1.5x1011) 

‣ Fixed frequency: 40MHz (1/25ns) 

•Protons are composite particles 

• abundant low energy interactions 

•Few rare high-E events overwhelmed in 
abundant low-E environment
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•Huge 

• O(106-108) channels 

• ~1 MB event size for pp collisions 

‣ 50 MB for pb-pb collisions (Alice) 

• Need huge number of connections 

•Fast and slow detectors 

• Some detectors readout requires >25 ns and integrate  

more than one bunch crossing's worth of information 

‣ e.g. ATLAS LArg readout takes ~400 ns 

•Online, what is lost is lost forever 

• Need to monitor selection - need very good control over all conditions

80

LHC Detectors Challenges
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•ATLAS/CMS Example (Run 1) 
▶︎ 1 MB/event at 100 kHz for O(100ms) HLT 

latency 
• Network: 1 MB*100 kHz = 100 GB/s 
• HLT farm: 100 kHz*100 ms = O(104) CPU cores 

▶︎ Intermediate steps (level-2) to reduce 
resources, at cost of complexity  
(at ms scale) 

Prefer COTS hardware: PCs (linux based), Ethernet 
protocols, standard LAN, configurable devices

81

HLT/DAQ requirements

See S.Cittolin, DOI: 10.1098/rsta.2011.0464

100kHz

1 kHz

DA
Q

+H
LT

Re
ad

ou
t

• Robustness and redundancy 

• Scalability to adapt to Luminosity,  

detector evolving conditions 

• Flexibility (> 10-years lifetime) 

• Based on commercial products 

• Limited cost

https://doi.org/10.1098/rsta.2011.0464
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•Single forward arm spectrometer → 

reduced event size 

• Average event size 60 kB 

• Average rate into farm 1 MHz 

• Average rate to tape ~12 kHz 
•Small event, at high rate 

• optimised transmission
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LHCb TDAQ Architecture
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•19 different detectors  

• with high-granularity ant timing information  

• Time Projection Chamber (TPC): 

very high occupancy, slow response  

•Large event size (> 40MB) 

• TPC producing 90% of data  

•Challenges for the TDAQ design: 

• detector readout: up to ~50 GB/s 

• low readout rate: max 8 kHz 

• storage:  1.2 TB/s (Pb-Pb)
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ALICE
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Leading edge, world class neutrino 

experiment with high profile physics 

programme 
• Nature of neutrinos, supernova collapse, 

proton decay searches 

Gigantic Far Detector 
▶︎ Huge target mass AND high resolution 

imaging

84

The Deep Underground Neutrino Experiment - DUNE

Each module 
Mass: 17 kT 

Size: 15 m x 14 m x 62 m 
Operational temperature: -186 ℃

1300 km Chicago

South  
Dakota

4 Liquid Argon Time Projection Chamber 
(LArTPC) modules

spatial resolution: 5mm

High-resolution imaging detector

DUNE FAR  
DETECTOR

DUNE NEAR  
DETECTOR
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4 Liquid Argon Time Projection Chamber 
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DETECTOR
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DETECTOR

TDAQ: no quick access and  no large host lab in the vicinity!

TDAQ: 4 independent instances, synchronized to a 
common clock, supporting different detector 
technologies
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DUNE DAQ System 
▶︎ Collects large amount of streaming data 

from detectors 
▶︎ Selects only interesting interactions 
▶︎ Buffers the full data stream for ~100s for 

supernova physics 
▶︎ Deliver selected interactions to permanent 

storage 

Unique challenges 
▶︎ High data rate, high uptime 
▶︎ Remote experimental site 
▶︎ Deep underground in an active mine
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The DUNE Data AcQuisition System - DAQ

DUNE DAQ System

depth 
~1.5 km

1 FD Module 
Sampling: 12bit @ 2 MHz 

Readout channels : ~400,000

Fermilab 
Illinois

…
…
…

…
…
…
…

…
…
…

…
…
…
…

…
…
…

…
…
…
… >16 Tb/s

SURF lab 
South Dakota

Underground DAQ

Surface DAQ

surface

O
(300 M

B/s)
per module
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•This lecture is just an introduction about data acquisition 

• DAQ (& Trigger) is a complex and fascinating topic, combining very different expertise 

• More details on Trigger and FPGAs in the following lectures  

• Covered the principles of a simple data acquisition system 

• Basic elements: trigger, derandomiser, FIFO, busy logic 

• Scaling to multi-channel, multi-layer systems 

• How data is transported 

‣ Bus versus network 

•A (very) brief overview of LHC experiments + DUNE DAQ systems 

• Similar architectures, different optimisations driven by detector requirements
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Summary


