
Kristian Harder, RAL HEP graduate lectures 2024 1

FPGA programming

Kristian Harder, RAL



Kristian Harder, RAL HEP graduate lectures 2024 2

Kristian Harder

PhD Hamburg University/DESY 1998–2002:

QCD analysis (OPAL, TESLA)

track reconstruction software (TESLA)

Fermilab 2002–2006:

electroweak analysis (DØ)

silicon detector back-end electronics (DØ)

RAL 2006–:

silicon detector simulation (ILC)

exotica analysis (CMS)

readout+trigger electronics (CMS, DUNE)

About me



Kristian Harder, RAL HEP graduate lectures 2024 3

Many of you will have to program FPGAs

during your project or afterwards.

Not many of you will have to design new FPGAs...

I will focus on the practical aspects

of working with FPGAs.

Targeting absolute beginners!

14:00 – 15:00 introductory lecture

15:00 – 15:20 coffee break

15:15 – 17:30 work in lab / discussion / Q&A

(might finish earlier)

About this lecture



Kristian Harder, RAL HEP graduate lectures 2024 4

Field Programmable Gate Array

an integrated circuit consisting of

a large number of blocks with logic gates

connected by a programmable interconnection fabric

accessible through I/O blocks

Program your own electronic circuit onto this chip, anywhere, anytime!

(within available resources)

What is an FPGA?



Kristian Harder, RAL HEP graduate lectures 2024 5

FPGA: trivial example



Kristian Harder, RAL HEP graduate lectures 2024 6

FPGA: trivial example



Kristian Harder, RAL HEP graduate lectures 2024 7

FPGA: trivial example



Kristian Harder, RAL HEP graduate lectures 2024 8

X
Not actually a good example.

Rather than specific gates,

FPGAs use lookup tables.

any gate configurable

in any location

FPGA: trivial example



Kristian Harder, RAL HEP graduate lectures 2024 9

A look-up table is a small memory bank

that encodes a general logic function:

input A input B input C output

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

LUTs can be programmed to act as basic logic gates

(AND, OR, etc),

but also as complex combinations.

lookup tables



Kristian Harder, RAL HEP graduate lectures 2024 10

Configurable logic block by Xilinx (probably outdated):

look-up tables to manipulate inputs

multiplexers to route the signals

flip-flops (clocked storage devices) to hold the outputs

multiple blocks running on same clock for synchronous operation

modern logic blocks



Kristian Harder, RAL HEP graduate lectures 2024 11

Multiple logic blocks working together

What happens if block A output changes just as block B is reading it?

need synchronous operation – everything running on same clock

Any individual task needs to

either finish well within one clock cycle

or be broken down into subtasks with registers in between

How much can be done within one clock cycle

depends on the clock frequency

Faster clocks means things get done more quickly,

but you might have to break them down into smaller bits.

faster clock is not always better

the importance of timing



Kristian Harder, RAL HEP graduate lectures 2024 12

in
p
u
ts new output

every

clock edge

intermediate logic

clock rate → speed

combinational logic

must meet timing

for predictable

behaviour

graph by Edward Freeman (STFC)

synchronous sequential logic



Kristian Harder, RAL HEP graduate lectures 2024 13

Configurable logic block by Xilinx (probably outdated):

other blocks on modern FPGAs:

high speed transceivers, PCIe interfaces, ethernet interfaces,

memory banks, clock generators, DSPs, interfaces for external RAM,

even entire CPUs... (but typically digital electronics only)

modern logic blocks



Kristian Harder, RAL HEP graduate lectures 2024 14

example of resources available on current generation FPGAs:
Xilinx Virtex Ultrascale+ devices

NB: very difficult to use anywhere near 100% of those resources
due to limitations of the interconnection fabric

modern FPGAs



Kristian Harder, RAL HEP graduate lectures 2024 15

CPUs and FPGAs are capable of performing arbitrary tasks

depending on programming.

But the approach is fundamentally different:

CPU
rigid silicon — the processing units remain fixed

(except basics like enabling/disabling cores in multicore processors)

Flexibility from stepping through instructions provided in memory

FPGA
flexibility arises from reconfiguring the fabric itself,

producing a highly specialised processing unit

very different type of device

major differences in how they are being programmed

suitable for different types of application

CPU vs FPGA



Kristian Harder, RAL HEP graduate lectures 2024 16

example: edge detection in histogram (e.g. line of video pixels)

CPU
scan a line like

CPU vs FPGA



Kristian Harder, RAL HEP graduate lectures 2024 17

example: edge detection in histogram (e.g. line of video pixels)

CPU
scan a line like

FPGA
instantiate a bunch of comparators,

get result in O(1) clock cycle

CPU vs FPGA



Kristian Harder, RAL HEP graduate lectures 2024 18

example: edge detection in histogram (e.g. line of video pixels)

CPU
scan a line like

FPGA
instantiate a bunch of comparators,

get result in O(1) clock cycle

FPGA benefits from parallel instantiation of

a large number of specialised logic circuits

NB: GPUs are somewhat in the middle — massive parallelisation with simplified CPUs

CPU vs FPGA



Kristian Harder, RAL HEP graduate lectures 2024 19

FPGAs offer advantages over CPUs for specific applications:

high degree of parallelisation, pipelining

many high speed data links

precise control over data path → fixed latency

low latency (if done right)

FPGAs have weaknesses too:

complex arithmetic (floating point numbers etc)

cost (depending on parameters)

FPGA applications



Kristian Harder, RAL HEP graduate lectures 2024 20

Use of FPGAs in particle physics

L1 trigger

DAQ

clock distribution (incl fast commands, triggers)

FPGA use elsewhere

high performance computing: FPGAs supporting CPUs

aerospace, automotive, telecommunications, BitCoin mining

prototyping of new ASICs

FPGA applications



Kristian Harder, RAL HEP graduate lectures 2024 21

Use of FPGAs in particle physics

L1 trigger

DAQ

clock distribution (incl fast commands, triggers)

FPGA use elsewhere

high performance computing: FPGAs supporting CPUs

aerospace, automotive, telecommunications, BitCoin mining

prototyping of new ASICs

Note on ASICs (Application Specific Integrated Circuits):

actual custom chips can have higher speed, higher density, lower

power, more resources, can be cheaper in large quantities,

require no in situ programming

BUT: much longer time to availability, mistakes are expensive

we typically use them only in detector front-end

FPGA applications



Kristian Harder, RAL HEP graduate lectures 2024 22

about 50% market share, full range incl high end

formerly Altera, about 35% market share

low power, low cost devices

low power FPGA/ASIC hybrids

low power, radiation hard, non-volatile (flash based)

...and probably others!

This lecture focusing on AMD/Xilinx — used by CMS-UK, ATLAS-UK

FPGA vendors



Kristian Harder, RAL HEP graduate lectures 2024 23

examples for commercially available FPGA boards:

FPGA accelerator card

based on Altera device

FPGA RF/optical I/O card

based on Xilinx device

commercial FPGA platforms



Kristian Harder, RAL HEP graduate lectures 2024 24

Imperial College’s Serenity board

multi-purpose board

mostly for CMS upgrade

two FPGA sites

FPGAs easily replaceable

optical high speed links

ATCA form factor

comes with single board PC

custom hardware



Kristian Harder, RAL HEP graduate lectures 2024 25

FPGA manufacturers provide development platforms for their FPGAs:

FPGA on circuit board with peripherals and infrastructure

benefits:

often available very early on after release of new devices

often relatively low cost because subsidised

In widespread use in our labs!

tested algorithms for Serenity long before prototypes available

experience can actually influence custom board design

ideal for learning: availability, example designs

development boards



Kristian Harder, RAL HEP graduate lectures 2024 26

user LEDs and switches

Xilinx zcu102



Kristian Harder, RAL HEP graduate lectures 2024 27

Digilent Nexys A7



Kristian Harder, RAL HEP graduate lectures 2024 28

The set of configuration instructions for an FPGA

is not actually modifying hardware,

but it is not a software algorithm either.

It is somewhat in between, which is why it is called

FIRMWARE!

Description either graphically as schematics,

or in a hardware description language.

hardware description language looks similar to software,

but is very different.

How to program an FPGA



Kristian Harder, RAL HEP graduate lectures 2024 29

We won’t use schematics today, but we will implement this design.

Note inputs, outputs, blocks, signals, busses, constants, and a loop!

Relatively easy to understand, but not very practical for complex tasks.

schematics



Kristian Harder, RAL HEP graduate lectures 2024 30

Two main languages in use:

VHDL Verilog

resemblance Pascal/Ada C
strong types yes no
composite data types yes no
case sensitive no yes
library management yes no
who in CMS likes it Brits Americans

from blog.digilentinc.com

hardware description languages



Kristian Harder, RAL HEP graduate lectures 2024 31

Two main languages in use:

VHDL Verilog

resemblance Pascal/Ada C
strong types yes no
composite data types yes no
case sensitive no yes
library management yes no
who in CMS likes it Brits Americans

We use VHDL in our projects because

complex data types make interfaces easier to read (and write)

strong typing reduces margin for error

it does seem to be a bit easier to read

Firmware design is intrinsically modular.

Can mix Verilog, VHDL and schematic design in one project.

(Prefer not to.)

hardware description languages



Kristian Harder, RAL HEP graduate lectures 2024 32

Let’s make some LEDs blink on our Nexys A7 development board!

We will need:

LEDs

Nexys A7 has a set of 16 user LEDs connected to FPGA I/O pins

pin location and required voltage levels are documented

clock

all development boards have oscillators

some connected to FPGA directly

some connected through programmable clock chips

high speed clock signals are often differential

firmware

VHDL design discussed on following pages

example project



Kristian Harder, RAL HEP graduate lectures 2024 33

This is all the VHDL we need today!

This block connects to a

100 MHz clock input,

sends the clock signal

through a buffer,

runs a 31 bit counter on that clock

(highest bit should then alternate

at about 0.1Hz),

and connects the highest

(i.e. slowest) bits to LEDs

Let’s look at the code in detail

top level block



Kristian Harder, RAL HEP graduate lectures 2024 34

←− This is a comment

top level block



Kristian Harder, RAL HEP graduate lectures 2024 35

}←− Load packages from libraries

IEEE.std logic 1164
has types for logic signals

IEEE.numeric std
has numeric data types

unisim.VComponents
has declarations
and simulation data for
device-specific primitives

top level block



Kristian Harder, RAL HEP graduate lectures 2024 36

}←− Declare a VHDL block with ports

We give this block a name (top)

and define connections (ports)
to the outside

top level ports correspond to
actual FPGA I/O pins

top level block



Kristian Harder, RAL HEP graduate lectures 2024 37

}←− Describe the VHDL block

top level block



Kristian Harder, RAL HEP graduate lectures 2024 38

}←− Declare internal signals we need

consider signals more like wires,
not as variables

can assign an initial state, though

top level block



Kristian Harder, RAL HEP graduate lectures 2024 39

}←− Instantiate a different block

this one is from a library

it buffers an incoming clock
for distribution

we name this instance ibuf

we connect it to our signals

top level block



Kristian Harder, RAL HEP graduate lectures 2024 40

}←−
a process

runs when specific events occur

here: rising edge of clk

allocate incremented value to count

(almost like software, isn’t it?)

top level block



Kristian Harder, RAL HEP graduate lectures 2024 41

←−

connecting counter bits with LED output ports

this is NOT a one time assignment

it connects signals like wires

every change in count
will change the state of leds

top level block



Kristian Harder, RAL HEP graduate lectures 2024 42

one missing ingredient:

our design software needs to be told

what pins clock and LEDs

are connected to

and what logic standard to use

define constraints (separate file)

(this information from Nexys A7 documentation)

top level block



Kristian Harder, RAL HEP graduate lectures 2024 43

There is a number of steps between VHDL and a blinking LED:

synthesis

translate VHDL into netlist (optimised components with connections)

implementation

map design onto actual FPGA resources,

assign place to entities and route signals along the fabric

bitfile generation

create actual bitstream that can be uploaded to device

JTAG configuration

connect to device via serial JTAG interface and configure it!

most high-end FPGAs use volatile RAM to store configuration

→ need to reconfigure with JTAG after each power-up

or store firmware in external flash ROM

firmware workflow



Kristian Harder, RAL HEP graduate lectures 2024 44

JTAG interface can have several devices in series

e.g. multiple FPGAs

or a FPGA and a flash ROM for non-volatile firmware storage

All devices identify themselves, so software can verify expected type

Some boards have built-in JTAG controllers, just need USB cable.

Others need external USB programmers:

JTAG connection can be used for debugging! Logic analyser cores

JTAG



Kristian Harder, RAL HEP graduate lectures 2024 45

Xilinx Vivado



Kristian Harder, RAL HEP graduate lectures 2024 46

Report after building our example firmware for the Nexys A7:

Vivado report



Kristian Harder, RAL HEP graduate lectures 2024 47

More complex firmware is best tested in simulation first

A very powerful tool for verification and debugging!

exactly reproducible inputs

much faster turnaround time than tests on hardware

but not always a fully accurate reflection of timing,

especially when timing is marginal or outside specifications

comparison of firmware output on simulation and on actual hardware

is often part of verification procedure

Vivado has an integrated simulator

Third party software exists (e.g. Siemens/Mentor Graphics QuestaSim)

simulation



Kristian Harder, RAL HEP graduate lectures 2024 48

simulation



Kristian Harder, RAL HEP graduate lectures 2024 49

last topic: how to approach a BIG firmware project

software development: distributed, collaborative, version controlled,

unit tests, release management

firmware development: lonesome engineer with hard disk full of zip files

scaling up



Kristian Harder, RAL HEP graduate lectures 2024 50

last topic: how to approach a BIG firmware project

software development: distributed, collaborative, version controlled,

unit tests, release management

firmware development: lonesome engineer with hard disk full of zip files

THIS IS NOT VIABLE ANYMORE!

big very complex chips

extremely high speed signals

distributed development

negotiated interfaces

developers with varying skill levels

scaling up



Kristian Harder, RAL HEP graduate lectures 2024 51

Firmware projects like CMS L1 trigger are very demanding:

very complex

need to be very reliable

subject to international collaboration and peer review

Need to work much more like with large software projects:

modularity (leave the hardcore stuff to top experts)

version control and release management

rigorous testing, project supervision

CMS L1 trigger firmware project:

separate framework and algorithm firmware

script-based firmware build system (also enforces module structure)

git repository (with automatic nightly builds)

formal developer and user support (ticket system)

very successful model, proven in LHC run 2 already

large firmware projects



Kristian Harder, RAL HEP graduate lectures 2024 52

Key points:

FPGAs are a very powerful tool

for low latency high throughput applications

FPGA programming by firmware has many similarities

with software development, but important differences

We are moving more and more functionality into FPGAs,

e.g. in L1 trigger.

We have a lot more people who know how to write software

than how to write firmware. This has to change.

I hope I demonstrated today that writing firmware is no voodoo.

conclusion



Kristian Harder, RAL HEP graduate lectures 2024 53

We will have a coffee break now,
then move to R1 PPD lab 6.
We have five PCs with an FPGA board attached

work in groups of 2–3 people

We will:

go through the design+programming step by step

test the example on an actual FPGA

maybe try a few modifications

discuss any questions you might have

next: try it all yourself!



Kristian Harder, RAL HEP graduate lectures 2024 54

Nexys A7 example overview



Kristian Harder, RAL HEP graduate lectures 2024 55

Nexys A7 example with button


