Beyond the Standard Model at Muon Collider

Karol Krizka

July 3, 2024

UK μC P&D

The Standard Model is working very nicely! HEP experiments give values consistent with theorist's calculations.

But...

The Standard Model Problems

... not consistent with non-HEP observations

• Dark Matter

• Cosmological observations show large blobs of unseen mass and SM cannot explain them

• Matter/Antimatter asymmetry

• SM says matter/antimatter are almost the same, but world tells us that there is more matter

• Hierarchy "problem"

- Higgs mass only correct if parameters are very precise for cancellations to occur
- No gravity, Dark Energy, neutrino masses...

More "solutions" than questions...

4 UK μC P&D

Collider experiments allow you to sample a **huge space of theories** with **one experimental setup**!

Very useful if you don't know where to look...

Impossible to show Muon Collider is the best collider.

I don't know what your favourite (or "right") theory is.

Following Slides:

- How you can produce new physics.
- How you can search for BSM.
- A sampling of BSM to compare reach with other experiments.

Goal is to show that a Muon Collider has the flexibility needed for the future.

Annihilation (x~1)

~10 for QCD vs EW production.

100 TeV pp \approx 10-30 TeV $\mu\mu$

Vector Boson Fusion (x << 1)

Muon collider is a vector-boson collider

Event Counts

A few common BSM signals (left) and backgrounds (right).

July 3, 2024

Buttazzo, Franceschini, Wulzer

SUSY: Naturalness

10 UK μC P&D

Generic BSM: Z'

Compatible quark vs lepton couplings.

Dark Matter (WIMP)

"Minimal Dark Matter"

- Electroweak multiplet w/ neutral lighted particle.
- Thermal relic abundance fixes mass scale to 1-23 TeV.
- Small mass splittings make signature difficult.

mono-photon

VBF

mono-muon

DM and Disappearing Tracks

13 UK μC P&D

Muon-specific Opportunities

First time we would be colliding muons!

There are anomalies in this sector...

anomaly and probe its form.

And many more...

15 UK μC P&D

Conclusion

- Muon Collider is good for Beyond the Standard Model!
 - Energy reach of a proton collider.
 - Clean processes of a lepton collider.
- Combination of muon and vector-boson colliders.
 - Makes this a unique machine.
- Reach comparable to FCChh.
 - Hard to tell without getting into model specifics...
- Missing: detector effects and precision measurements.
 - Delphes card in preparation for ESPPU

BACKUP SLIDES

Sig vs Bkg for Higgs

