Higgs physics at muon colliders

Workshop on UK Contributions to Muon Collider Detector R&D

3/7/24, University of Birmingham

Eugenia Celada University of Manchester

The University of Manchester

Why a muon collider?

from L. Mantani

Muons vs hadrons

Equivalence of production cross section of heavy pairs at hadron and muon colliders

QCD physics: 14 TeV $\mu\mu$ ~ 100 TeV ppEW physics: 14 TeV $\mu\mu$ ~ 200 TeV pp

 β = relative strength of the heavy particle interactions with the partons / muons

[Snowmass; 2203.07256]

Production modes

Two main production modes: s-channel and VBF

VBF takes over at high energies

[Constantini et al.; 2005.10289]

Production modes

	σ [fb]	\sqrt{s} [TeV]		σ [fb]	\sqrt{s} [TeV]
$\overline{t\bar{t}}$	$8.4 \cdot 10^{0}$	4.5	$t\bar{t}ZZ$	$2.2 \cdot 10^{-2}$	8.4
$t\bar{t}Z$	$5.3 \cdot 10^{-1}$	6.9	$t\bar{t}HZ$	$7.0 \cdot 10^{-3}$	11
$t \bar{t} H$	$7.6 \cdot 10^{-2}$	8.2	$t\bar{t}HH$	$5.9\cdot 10^{-4}$	13
$t\bar{t}WW$	$1.2\cdot10^{-1}$	15	$ t \overline{t} t \overline{t}$	$1.6\cdot10^{-3}$	22
HZ	$4.3 \cdot 10^0$	1.7	$\parallel HHWW$	$4.3 \cdot 10^{-3}$	9.2
HHZ	$2.1\cdot 10^{-2}$	4.2	HZZ	$9.4\cdot10^{-2}$	2.7
HHHZ	$4.7\cdot10^{-5}$	6.9	HHZZ	$5.9\cdot 10^{-4}$	5.7
HWW	$6.6\cdot10^{-1}$	4.5			
WW	$2.1 \cdot 10^2$	4.8	$\parallel WWZ$	$1.6\cdot 10^1$	6.2
ZZ	$3.9\cdot10^1$	2.4		$4.8 \cdot 10^{-1}$	2.3

Energy at which VBF dominates over s-channel production

Parton luminosities

A high-energy muon collider is effectively a vector boson collider

[Constantini et al.; 2005.10289]

The SMEFT

Dimension-6 operators Warsaw basis

can introduce energy growing effects

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \mathcal{O}(\Lambda^{-3})$$

$$\swarrow$$

$$\mathcal{M} \sim \mathcal{M}_{SM} \left(1 + C_{i} \frac{v^{2}}{\Lambda^{2}} + C_{j} \frac{vE}{\Lambda^{2}} + C_{k} \frac{E^{2}}{\Lambda^{2}} \right)$$

Global SMEFT fits

- Constraints on Higgs effective couplings
- Production channels:
 VBF, s-channels, Higgs decays

• global Higgs&EW fits

up to $\mathcal{O}(10)$ improvements on Higgs couplings at 10 TeV $\mu\mu$ compared to HL-LHC

[[]Snowmass; 2203.07261]

Higgs potential at HL-LHC

• Trilinear interaction: constraints on the shape of the Higgs potential

In the SM:
$$V(H) = \frac{1}{2}m_H^2H^2 + \lambda_3vH^3 + \frac{1}{4}\lambda_4H^4$$

 $\lambda_3 = \lambda_4 = m_H^2/2v^2 \equiv \lambda_{SM}$

• HH notoriously difficult at LHC ($\sigma \sim 30$ fb)

• HL-LHC expected to reach 50% precision on λ_3

[Cepeda et al.; 1902.00134]

VBF as a probe of Higgs couplings

Precise determination only possible at high-energy machines

[[]Snowmass; 2203.07256]

Relevant SMEFT operators

$$\begin{split} \mathcal{O}_{\varphi} &= \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3 \supset v^3 H^3 + \frac{3}{2}v^2 H^4 \\ \mathcal{O}_{\varphi d} &= \left(\varphi^{\dagger}\varphi\right) \Box \left(\varphi^{\dagger}\varphi\right) \supset 2v \left(H\Box H^2 + H^2\Box H\right) + H^2\Box H^2, \\ \mathcal{O}_{\varphi D} &= \left(\varphi^{\dagger}D_{\mu}\varphi\right)^{\dagger} \left(\varphi^{\dagger}D^{\mu}\varphi\right) \supset \frac{v}{2}H\partial_{\mu}H\partial^{\mu}H + \frac{H^2}{4}\partial_{\mu}H\partial^{\mu}H. \end{split}$$

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})$$

No additional E dependence Max sensitivity near threshold

3H vs 2H

- more sensitivity
- smaller rates (irrelevant at 3 TeV)

[Constantini et al.; 2005.10289]

Relevant SMEFT operators

$$\begin{split} \mathcal{O}_{\varphi} &= \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3 \supset v^3 H^3 + \frac{3}{2}v^2 H^4, \\ \mathcal{O}_{\varphi d} &= \left(\varphi^{\dagger}\varphi\right) \Box \left(\varphi^{\dagger}\varphi\right) \supset 2v \left(H\Box H^2 + H^2\Box H\right) + H^2\Box H^2 \\ \mathcal{O}_{\varphi D} &= \left(\varphi^{\dagger}D_{\mu}\varphi\right)^{\dagger} \left(\varphi^{\dagger}D^{\mu}\varphi\right) \supset \frac{v}{2}H\partial_{\mu}H\partial^{\mu}H + \frac{H^2}{4}\partial_{\mu}H\partial^{\mu}H \right) \end{split}$$

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})$$

Additional p^2 dependence Gain in sensitivity with E

 O_{ϕ} and $O_{\phi d}$ sensitivities are driven by complementary PS regions

[Constantini et al.; 2005.10289]

Relevant SMEFT operators

$$\begin{split} \mathcal{O}_{\varphi} &= \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3 \supset v^3 H^3 + \frac{3}{2}v^2 H^4, \\ \mathcal{O}_{\varphi d} &= \left(\varphi^{\dagger}\varphi\right) \Box \left(\varphi^{\dagger}\varphi\right) \supset 2v \left(H\Box H^2 + H^2\Box H\right) + H^2\Box H^2, \\ \mathcal{O}_{\varphi D} &= \left(\varphi^{\dagger}D_{\mu}\varphi\right)^{\dagger} \left(\varphi^{\dagger}D^{\mu}\varphi\right) \supset \frac{v}{2}H\partial_{\mu}H\partial^{\mu}H + \frac{H^2}{4}\partial_{\mu}H\partial^{\mu}H. \end{split}$$

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})$$

constrained by EWPO

Individual bounds (68% CL)

FCC combination $C_{\varphi} \sim [-0.79, 0.79] \text{ TeV}^{-2}$ and $C_{\varphi d} \sim [-0.03, 0.03] \text{ TeV}^{-2}$ 14 TeV muon collider $C_{\varphi} \sim [-0.02, 0.02] \text{ TeV}^{-2}$ and $C_{\varphi d} \sim [-0.002, 0.002] \text{ TeV}^{-2}$

 $O_{\phi d}$ constrained in single Higgs: only O_{ϕ} relevant

Decorrelating λ_3 and λ_4

$$\lambda_3 = \lambda_{SM}(1 + \delta_3) = \kappa_3 \lambda_{SM}$$

$$\lambda_4 = \lambda_{SM}(1 + \delta_4) = \kappa_4 \lambda_{SM}$$

can be correlated in the SMEFT at dim 6

$$\mathcal{O}_{\varphi} = \left(\varphi^{\dagger} \varphi - rac{v^2}{2}
ight)^3 \quad \Longrightarrow \quad \delta_4 = 6 \, \delta_3$$

Need to measure λ_4 independently

• sensitivity at tree level in HHH

 $\lambda_4/\lambda_4^{\mathrm{SM}} \in [-2,+13]$ at 2σ at FCC-hh

• at loop-level in HH

 $\lambda_4/\lambda_4^{\mathrm{SM}} \in [-2.3, +4.3]$ at 1σ at FCC-hh

[Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao; 2003.13628]

Decorrelating λ_3 and λ_4

$$\lambda_3 = \lambda_{SM}(1 + \delta_3) = \kappa_3 \lambda_{SM}$$

$$\lambda_4 = \lambda_{SM}(1 + \delta_4) = \kappa_4 \lambda_{SM}$$

correlated in the SMEFT at dim 6

$$\mathcal{O}_{arphi} = \left(arphi^{\dagger} arphi - rac{v^2}{2}
ight)^3 \quad \Longrightarrow \quad \delta_4 = 6 \, \delta_3$$

Need to measure λ_4 independently

• sensitivity at tree level in HHH

 $\lambda_4/\lambda_4^{\mathrm{SM}} \in [-2,+13]$ at 2σ at FCC-hh

• at loop-level in HH

 $\lambda_4/\lambda_4^{
m SM} \in [-2.3,+4.3]$ at 1σ at FCC-hh

[Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao; 2003.13628]

Decorrelating λ_3 and λ_4

1σ exclusion plots

At other colliders

- ILC ~ [-10, +10]
- CLIC ~ [-5, +5]
- FCC-hh ~ [-2, +4]

		Constraints on δ_4 (with $\delta_3 = 0$)			
\sqrt{s} (TeV)	Lumi (ab^{-1})	x-sec only	x-sec only	threshold $+ M_{HHH} > 1$ TeV	
		1σ	2σ	1σ	
6	12	[-0.60, 0.75]	[-0.90, 1.00]	[-0.55, 0.85]	
10	20	[-0.50, 0.55]	[-0.70, 0.80]	[-0.45, 0.70]	
14	33	[-0.45, 0.50]	[-0.60, 0.65]	[-0.35, 0.55]	
30	100	[-0.30, 0.35]	[-0.45, 0.45]	[-0.20, 0.40]	
3	100	[-0.35, 0.60]	[-0.50, 0.80]	$\left[-0.45, 0.65\right]$	

Ø(10%) precision at a muon colliders

[Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao; 2003.13628]

HH as a probe of VVHH

HH depends on κ_3 but also on κ_V , κ_{V2}

correlated in the SMEFT

Expected 95% CL bounds at muon colliders:

E. Celada - Higgs physics at muon colliders

Top Yukawa in tt VBF

E. Celada - Higgs physics at muon colliders

 $E_{\rm CM}$ [TeV]

Muon Yukawa

• Yukawa couplings of the second generation are still poorly measured

Anomalous muon-Higgs couplings in HEFT

$$\mathcal{L} \supset -\frac{m_H^2}{2} H^2 - m_\mu \bar{\mu} \mu - \sum_{n=3}^{\infty} \beta_n \frac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^{\infty} \alpha_n \frac{m_\mu}{v^n} \bar{\mu} \mu H^n$$

...and in SMEFT at dim 6
$$\frac{c_{\ell\varphi}^{(6)}}{\Lambda^2} (\varphi^{\dagger} \varphi) (\bar{\ell}_L \varphi \mu_R + \text{h.c.})$$

Muon Yukawa

• Yukawa couplings of the second generation are still poorly measured

Anomalous muon-Higgs couplings in HEFT

$$\mathcal{L} \supset -\frac{m_H^2}{2} H^2 - m_\mu \bar{\mu} \mu - \sum_{n=3}^{\infty} \beta_n \frac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^{\infty} \alpha_n \frac{m_\mu}{v^n} \bar{\mu} \mu H^n$$

...and in SMEFT at dim 6
$$\frac{c_{\ell\varphi}^{(6)}}{\Lambda^2} (\varphi^{\dagger} \varphi) (\bar{\ell}_L \varphi \mu_R + \text{h.c.})$$

• An anomalous Yukawa coupling in $\mu\mu \rightarrow V^N$ leads to unitarity breaking effects

[[]EC, T. Han et al.; 2312.13082]

 $\Sigma_{x}\sigma_{x}$ [fb]

Muon Yukawa

	0	1	2	3	4	5	
0	-	Ζ	Z^2, W^2	$Z^3 \ W^2 Z$	$Z^4,W^4 \ W^2 Z^2$	$Z^5, W^2 Z^3 \ W^4 Z$	
1	Η	ZH	$W^2 H \ Z^2 H$	$W^2 Z H \ Z^3 H$	$W^4H, Z^4H \ W^2Z^2H$	-	
2	H^2	ZH^2	$\frac{W^2H^2}{Z^2H^2}$	$W^2 Z H^2 \ Z^3 H^2$	-	-	α_1 α_1
3	H^3	ZH^3	$W^2 H^3 \ Z^2 H^3$	-	-	-	$ \alpha_1$
4	H^4	ZH^4	-	-	-	-	1
5	H^5	-	-	-	-	-	

Great potential for a 10 TeV muon collider!

- current bounds at LHC: $|\Delta \alpha_1| \in [-0.2, 0.4]$
- SMEFT: $\mu\mu \rightarrow HHH$ constrains $|\Delta \alpha_1| \leq 0.05$
- HEFT: $|\Delta \alpha_1| \le 0.1$ (combination)
- sign determination in *HH*, *HHH*, *ZZZ*
- simultaneous constraints in (α_1, α_2) contour plots

Summary & conclusions

- A high energy muon collider is a vector boson collider
- probe Higgs interactions via VBF and longitudinal scattering amplitudes
- promising results for
 - triple & quartic Higgs self coupling: better than FCC-hh already at 6 TeV
 - *HHVV*: competitive with FCC-hh at ~ 6 TeV
 - top Yukawa: %-level precision at $\sqrt{s} \ge 14$ TeV and $\mathscr{L} \sim 100$ ab⁻¹
 - muon Yukawa: 5% precision at a 10 TeV collider

Great prospects for Higgs physics motivate further studies