Detector Challenges at a Muon Collider

Alessandro Cerri, University of Sussex, Universita di Siena

It's all about the physics case!

Three broad areas:

3/7/2024

- 100s of GeV \rightarrow EW scale (VB, H production etc.)
- TeV-scale → Direct production of New Physics
- Unconventional signatures (IIp, etc.)

- Initially: ILC detector adapted to a 3 TeV muon collider
- Evolution: 10 TeV experiment design

Physics Case Influences Machine Design

Aim at ~% level precision on EW-mediated 2-2 processes $\left[\sigma \sim 1 fb \times \left(\frac{10 TeV}{E_{CM}}\right)^2\right]$ in 5 years:

$$-int \sim 10 ab^{-1} \times \left(\frac{E_{CM}}{10 TeV}\right)^2$$

$$\mathsf{L}_{\mathsf{inst}} \sim \frac{5 \text{ years}}{\mathsf{time}} \left(\frac{E_{\mathsf{cm}}}{10 \, \mathrm{TeV}}\right)^2 2 \cdot 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

Collision environment: Machine→ Detector

Three "environmental" drivers on detector design:

- Collision rate
- Radiation levels
- Beam background

Parameter	Symbol	Unit	Target v	Target value	
Centre-of-mass energy	$E_{ m cm}$	TeV	3	10	14
Luminosity	£	$10^{34}{ m cm^{-2}s^{-1}}$	2	20	40
Collider circumference	C_{coll}	km	4.5	10	14
Muons/bunch	N_{\pm}	10 ¹²	2.2	1.8	1.8
Repetition rate	$f_{ m r}$	Hz	5	5	5
Total beam power	$P_{-} + P_{+}$	MW	5.3	14	20
Longitudinal emittance	$arepsilon_{ m l}$	MeV m	7.5	7.5	7.5
Transverse emittance	$arepsilon_{\perp}$	mm	25	25	25
IP bunch length	σ_z	mm	5	1.5	1.1
IP beta-function	$m{eta}_{\perp}^{*}$	mm	5	1.5	1.1
IP beam size	σ_{\perp}	μm	3	0.9	0.6

Bottomline(s):

- Moderate collision rate
- Detector irradiation comparable to HL-LHC
- Beam Induced Background (BIB) is the most specific (AND STRINGENT) driver to the detector design

Detail in the next slides!

Event Rate

Parameter	Symbol	Unit	Target v	Target value	
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	14
Luminosity	£	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2	20	40
Collider circumference	$C_{ m coll}$	km	4.5	10	14
Muons/bunch	N_{\pm}	10 ¹²	2.2	1.8	1.8
Repetition rate	$f_{ m r}$	Hz	5	5	5
Total beam power	$P_{-} + P_{+}$	MW	5.3	14	20
Longitudinal emittance	$arepsilon_1$	MeV m	7.5	7.5	7.5
Transverse emittance	\mathcal{E}_{\perp}	mm	25	25	25
IP bunch length	σ_z	mm	5	1.5	1.1
IP beta-function	eta_{\perp}^*	mm	5	1.5	1.1
IP beam size	σ_{\perp}	μm	3	0.9	0.6

1 bunch, 100 kHz rate, >10 us crossing not a severe constraint on DAQ: could opt for a triggerless design.

Detector Irradiation

n-eq fluence and total ionising doses simulated:

- 10¹⁴⁻¹⁵ 1 MeV neq/yr/cm² fluence
 - Decreasing by x10 from tracker to calorimeter
- 1 Mrad/y [tracker] 10⁻¹ Mrad/y [calo]
 Simulation @ 1.5 TeV for a 2.5 Km collider

Environment is HL-LHC-like:

Radiation hardness requirements like HL-LHC (expected)

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-neq/cm ²)		
	R=22 mm	R=1500 mm	R=22 mm	R=1500 mm	
Muon Collider	10	0.1	10^{15}	10^{14}	
HL-LHC	100	0.1	10^{15}	10^{13}	
K. Black, Muon Collider Forum F			Collider Forum Report		

6

3/7/2024

A. Cerri – Detector Challenges at a μ Collider

Beam Background

Beam Background

From D. Calzolari

	Description	Relevance as background	
Muon decay	Decay of stored muons around the collider ring	Dominant source	
Synchrotron radiation by stored muons	Synchrotron radiation emission by the beams in magnets near the IP (including IR quads → large transverse beam tails)	Small	
Muon beam losses on the aperture	 Halo losses on the machine aperture, can have multiple sources, e.g.: Beam instabilities Machine imperfections (e.g. magnet misalignment) Elastic (Bhabha) μμ scattering Beam-gas scattering (Coulomb scattering or Bremsstrahlung emission) Beamstrahlung (deflection of muon in field of opposite bunch) 	Can be significant (although some of the listed source terms are expected to yield a small contribution like elastic μμ scattering, beam-gas, Beamstrahlung)	
Coherent e⁻e⁺ pair production	Pair creation by real* or virtual photons of the field of the counter-rotating bunch	Expected to be small (but should nevertheless be quantified)	
Incoherent e ⁻ e ⁺ pair production	Pair creation through the collision of two real* or virtual photons emitted by muons of counter-rotating bunches	Significant	

Design must prove the ability to mitigate and cope with the residual background: this is one of the main drivers at a muon collider detector.

Muon Decay: the dominant source Here's what a single muon decay can do:

Detector Shielding: nozzles!

HCAL ECAL

MAP Design (Fermilab-Conf-11-094-APC-TD)

D. Calzolari: 2023 IMCC Annual meeting

Beam background features depend critically on the details of the nozzle design!

Nozzles extend well into the detector volume

3/7/2024

A. Cerri – Detector Challenges at a μ Collider

D. Calzolari

Nozzle Optimisation

- Lengthy delicate process
- Small design changes \rightarrow significant effects on flux, occupancy

Baseline Detector Model: 1.5-3 TeV

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;
- 7.5 λ_l.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 X₀ + 1 λ₁.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Starting point: CLIC design, including nozzles and modified ID from MAP studies

BIB Reaching the Detector

Spectra and composition of BIB particles reaching the 1.5-3 TeV detector

Time of arrival of BIB hits relative to BC

Good timing resolution essential to reduce BIB impact on detector readout and reconstruction complexity! Solenoidal field intensity: contrasting needs between BIB mitigation and low-momentum tracking

3/7/2024

Detector Occupancy: Tracker

- Full detector and BIB simulation performed
- Innermost tracker layer occupancy vs HL-LHC:

Detector reference	Hit density [mm	Hit density [mm ⁻²]		
	ATLAS ITk	ALICE ITS3		
Pixel Layer 0	0.643	0.85		
Pixel Layer 1	0.022	0.51		
Subdetector	Granularity [μm²]	Timing res [ps]	ol.	
VXD	25x25	30		
IT	50x100	60		
OT	50x10000	60		

Additional handles that could help BIB mitigation:

- Cluster shape
- Directionality on layer doublets

The Muon Collider detector has a peculiar (BIBinduced) high-occupancy of the innermost part of the detector, dominated by EM components

Composition and spectra depend on shielding (eg nozzle) and detector (e.g. B field) design choices

Fig. 25 BIB hit occupancy in the calorimeter barrel region in a single bunch-crossing

~100 ps resolution to reject BIB tails

3/7/2024

- ~300 particles/cm² @ ECAL surface 96% γ @ <E>~1.7 MeV / 4% n
- 100 krad/y, 10¹³-10¹⁴ 1 MeV neq/cm²

Edep [GeV]

Aim is 3-5% σ_E /E for >100 GeV jets to e.g. separate W/Z \rightarrow jj

BIB rejection: 100ps resolution+2 MeV/cell threshold (dominant effect on energy resolution)

Fig. 28 Energy deposited by the BIB in a single bunch-crossing in the HCAL

Calorimetry: HCAL

HCAL occupancy much less severe (0.1x ECAL)

Back to the realm of less "BIB driven" detector designs

3/7/2024

Calorimetry Requirements

- Good timing
- Longitudinal and transversal (~cmxcm) segmentation
- Good energy resolution [10%/ \sqrt{E} ECAL, 30%/ \sqrt{E} HCAL]

Several R&D opportunities from DRD efforts are being evaluated

Fig. 27 Energy deposited by the BIB in a single bunch-crossing in the $\ensuremath{\mathsf{ECAL}}$

Muon Detectors

- BIB affects mostly the detector's endcaps, close to the beamline
- Dominated by ~<100 MeV n and ~M10 MeV γ
- ~100µm x <1ns resolution

Fig. 32 Energy distribution of photons from BIB. Colours represent different geometrical regions of the muon system

Requirements are at the limit of existing (e.g. RPC technology): boost MPGD [Micromegas and GEM] R&D with excellent timing capabilities

3/7/2024

10 TeV Detector Design Effort

Executive Summary

- Design is BIB-driven
 - Studies so far based on 1.5 TeV BIB: 3 TeV and 10 TeV under production
- Timeline driven by European Strategy milestones
- Two detector "flavours" under study

Critical aspects:

- Solenoid strength and location
- MDI optimisation: nozzles shape and materials
- Different detection technologies for complementarity and 2x IP readiness

MUSIC THANKS TO A. BERSANI MuColl v1 MUSIC Е В (3 TeV configuration) 3 TeV 3.57 T 3821 mm 10 TeV **4** T 2393 mm 10 TeV 5 T 2393 mm +About 40 mm steel vacuum tank

- 4-5 T solenoid to contain BIB •
 - Compromise between BIB exposure, high-pT tracking resolution and low-pT tracking reach
- HCAL iron used to close magnetic flux •
- ECAL within magnet volume to achieve • $10\%/\sqrt{E}$ energy resolution

t(coil)

344 mm

270 mm

423 mm

Detector Technologies

Tracker

- Mix of Micro and Macro pixels
- Geometry and field optimisation on-going, jointly with nozzle layout

Calorimetry

- ECAL: 5 layers (22 X₀) 10x10x40 mm³ PbF₂ crystals with SiPM readout
- HCAL: evaluating 3 TeV design (Polystyrene-steel)

Muon detectors

Keep 3 TeV design

- 1.5 TeV Nozzle
 W+B/PE
- Tracker VXD+IT+OT
- 5T Solenoid
- High Granularity calorimeters
 - ECAL: SiW
 - HCAL: Fe+Scintillator
- Muon spectrometer
 - RPC+Air

- 1.5 TeV Nozzle
 W+B/PE
- Tracker VXD+IT+OT
 - VXD doublets @ 3 TeV, removed (all but 1) @ 10 TeV

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25 \mu { m m} imes 25 \mu { m m}$	50 μ m $ imes$ 1mm	50 μ m $ imes$ 10mm
Sensor Thickness	50 μ m	100μ mm	100μ mm
Time Resolution	30ps	60ps	60ps
Spatial Resolution	5μ m $ imes$ 5μ m	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$

- 1.5 TeV Nozzle
 W+B/PE
- Tracker VXD+IT+OT
- 5T Solenoid
 - Moved inside calorimetry
 - $\sim 4X_0$ of material
 - Further feasibility studies needed

- 1.5 TeV Nozzle -W+B/PE
- Tracker VXD+IT+OT
- 5T Solenoid
- High Granularity calorimeters
 - ECAL: SiW (outside solenoid

		ECAL	HCAL
	Cell type	Silicon - Tungsten	Iron - Scintillator
	Cell Size	5.1mm $ imes$ 5.1mm	30.0mm $ imes$ 30.0 mm
	Sensor Thickness	0.5mm	3.0mm
ds BIB 🛛 🗚	Absorber Thickness	2.2mm	20.0mm
	Number of layers	50	100
AL		$10\%/\sqrt{E}$	$35\%/\sqrt{E}$
tector Challenges at a μ Collider			30

Conclusions and Outlook

- MuCol detector design is Physics and BIB-driven
 - BIB particles reaching the detector are dominated by secondary production: EM and n
 - Strong radial dependence of density
 - Solenoidal field helps mitigate the EM component
 - Detector irradiation comparable to HL-LHC
 - ...but with much higher background occupancy
 - Excellent/good timing resolution
 - High granularity
- Technologies are not sufficiently mature at this stage: R&D is needed (and will keep the community engaged)
- An LHC or HL-LHC class detector would not be the solution: at most can be seen as a "demonstrator" of the most critical technologies
- 3 TeV detector design CLIC inspired with variations to mitigate BIB
- 10 TeV detector design on-going, in two different flavours

DAQ and DataFlow

Simplified model:

- Tracker: 100 kHz event rate, 1ns/event window, x2 safety margin, 32bits/hit
 - \rightarrow 40 Mb/event, 30 Tb/s [BIB dominated]
- ECAL: 90 MCH, 10-3 hits/mm2, 0.2 MeV threshold, 20 bits/hit
- HCAL: 10% of ECAL
 → 40 Mb/event, 30 Tb/s
- Total: ~60 Tb/s

What kind of trigger farm would this require?

HLT Processing time (tracking dominated):

>10 tracks with pT>2.5 GeV found with 240E6 3D-HT cells

 X4 BIB reduction (e.g. loose timing) would bring this into a more feasible range (40E6 3D-HT cells) → 1 track @ pT>2.5 GeV

Dataflow

Detector readout: ~10⁴ 20 Gb/s links, 60 Tb/s event building bandwidth (could mitigate with filtering)

Storage:

No selection: 4 PB/day of storage

Assuming to target HL-LHC storage capacity (~60 GB/s):

- Full event storage ~750 Hz
 - H is ~0.1 Hz, WW is ~1 Hz
- Event cleaning (BIB rejection):
 99% BIB hits rejection → 100 kHz

Triggering:

3/7/2024

HLT Processing time (tracking dominated):

- >10 tracks with pT>2.5 GeV
- X4 BIB reduction (e.g. loose timing) would bring this into a more feasible

Backup Material