

MInternational UON Collider Collaboration

MuCol

Muon Collider Collaboration

D. Schulte On behalf of the International Muon Collider Collaboration

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Birmingham, July, 2024

Muon Collider Overview

MInternational UON Collider Collaboration

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \ \mu s$

Short, intense proton bunch		lonisation muon in	on cooling of matter	Acceleration to collision energy		Collision	
Protons produce pions decay into muons muons are captured		s which					

Muon Collider Promises

US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsev, J. Straight, M. Turner, L. Wang et al.

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	12-18	290
ILC	0.25	2.7	7-12	140
CLIC	0.38	2.3	7-12	110
CLIC	3	5.9	18-30	550
МС	3	1.8	7-12	230
мс	10	20	12-18	300
FCC-hh	100	30	30-50	560

Judgement by ITF, take it cum grano salis

D. Schulte, Muon Collider, Birmingham, July 2024

IMCC Goals

Develop high-energy muon collider as option for particle physics:

- Muon collider promises sustainable approach to the energy frontier
 - limited power consumption, cost and land use
- Technology and design advances in past years
- Reviews in Europe and US found no unsurmountable obstacle

Accelerator R&D Roadmap identifies the required work

Goals are

- Assess and develop the muon collider concept for a O(10 TeV) facility
- Identify potential sites to implement the collider
- Develop an initial muon collider stage that can start operation around 2050
- Develop an R&D roadmap toward the collider

IMCC: International Muon Collider Collaboration

Label	Begin	End	Description	Aspir	ational	Mir	imal
			· ·	[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
MC.ACC.ALT	2022	2025	High-energy alter-	11.7	0	0	0
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field	76	2700	29	0
			solenoids				
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHF. It should be noted that the personnel contains a significant number of PhD students. Material budgets do not include budget for travel, personal IT equipment and similar costs. Colours are included for comparison with the resource profile Fig. 5.7.

http://arxiv.org/abs/2201.07895

IMCC Organisation

Collaboration Board (ICB)

- Elected chair: Nadia Pastrone
- 50 full members, 60+ total

Steering Board (ISB)

- Chair Steinar Stapnes
- CERN members: Mike Lamont, Gianluigi Arduini
- ICB members: Dave Newbold (STFC), Mats Lindroos (ESS), Pierre Vedrine (CEA), N. Pastrone (INFN), Beate Heinemann (DESY)
- Study members: SL and deputies

Advisory Committee

Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

Will integrated the US, also increase in the leadership

Beam

parameters

3 MEUR from the EU, the UK and Switzerland, about 4 MEUR from the partners

oton Driver

Beam

parameters

Beam

parameters

The **backbone** of the study in Europe

30 partners

MuCol

- Strongly interweaved
 - Share most meeting
 - Similar management structure

Instrumental to kick off collaboration

- Motivated partners to commit
- Added resources
- Motivated CERN to commit more

Management similar to IMCC Deputy: Chris Rogers

-

MuCol

MoC and MuCol Partners

-				
	IEIO	CERN		INFN, Univ., Polit. Torino
	FR	CEA-IRFU		INFN, Univ. Milano
		CNRS-LNCMI		INFN, Univ. Padova
	DE	DESY		INFN, Univ. Pavia
		Technical University of Darmstadt		INFN, Univ. Bologna
		University of Rostock		INFN Trieste
		КІТ		INFN, Univ. Bari
	UK	RAL		INFN, Univ. Roma 1
		UK Research and Innovation		ENEA
		University of Lancaster		INFN Frascati
		University of Southampton		INFN, Univ. Ferrara
		University of Strathclyde		INFN, Univ. Roma 3
		University of Sussex		INFN Legnaro
		Imperial College London		INFN, Univ. Milano Bicoco
		Royal Holloway		INFN Genova
		University of Huddersfield		INFN Laboratori del Sud
		University of Oxford		INFN Napoli
		University of Warwick	Mal	Univ. of Malta
		University of Durham	FST	Tartu University

	INFN, Univ. Milano
	INFN, Univ. Padova
	INFN, Univ. Pavia
	INFN, Univ. Bologna
	INFN Trieste
	INFN, Univ. Bari
	INFN, Univ. Roma 1
	ENEA
	INFN Frascati
	INFN, Univ. Ferrara
	INFN, Univ. Roma 3
	INFN Legnaro
	INFN, Univ. Milano Bicocca
	INFN Genova
	INFN Laboratori del Sud
	INFN Napoli
Mal	Univ. of Malta
ST	Tartu University

INFN

IT

SE	ESS
	University of Uppsala
РТ	LIP
NL	University of Twente
FI	Tampere University
LAT	Riga Technical University
СН	PSI
	University of Geneva
	EPFL
BE	Univ. Louvain
AU	НЕРНҮ
	TU Wien
ES	I3M
	CIEMAT
	ICMAB
China	Sun Yat-sen University
	IHEP
	Peking University
КО	KEU
	Yonsei University

iowa state oniversity
University of Iowa
Wisconsin-Madison
Pittsburg University
Old Dominion
Chicago University
Florida State University
RICE University
Tennessee University
MIT Plasma science center
Pittsbergh PAC
СНЕР
FNAL
LBL
JLAB
BNL

Iowa State University

US

India

US

N	
	C

MuCol

US P5: The Muon Shot

Particle Physics Project Prioritisation Panel (P5) endorses muon collider R&D: "This is our muon shot"

Recommend joining the IMCC Consider FNAL as a host candidate US is already particpating to the collaboration

The New York Times

Particle Physicists Agree on a Road Map for the Next Decade

A "muon shot" aims to study the basic forces of the cosmos. But meager federal budgets could limit its ambitions.

AUGUST 28, 2023 | 10 MIN READ

Particle Physicists Dream of a Muon Collider

After years spent languishing in obscurity, proposals for a muon collider are regaining momentum among particle physicists

nature

SCI AM

Explore content 🖌 About the journal 🖌 Publish with us 🖌 Subscribe

nature > editorials > article

EDITORIAL | 17 January 2024

US particle physicists want to build a muon collider – Europe should pitch in

A feasibility study for a muon smasher in the United States could be an affordable way to maintain particle physics unity.

US ambition:

- Want to reach a 10 TeV parton level collisions
- Timeline around 2050
- Fermilab option for demonstator and hosting
- Reference design in a "few" years

Informal discussion with DoE (Regina Rameika, A. Patwa):

- DoE wants to maintain IMCC as a global collaboration
- Addendum to CERN-DoE-NSF agreement is in preparation

IMCC prepares options for Europe and for the US in parallel

Physics and Detector Concepts

MuCol Two detector concepts are being developed

MUSIC

(MUon Smasher for Interesting Collisions)

A "New Detector Concept", maybe a flashier name can be found

IMCC Plans

For the **ESPPU**, will deliver

- Evaluation report, including tentative cost and power consumption scale estimate
- R&D plan, including some scenarios and timelines
- Requires to push as hard as possible with existing resources

After ESPPU submission:

- Will fulfill EU contract
 - Final deliverable is report on all R&D
- Will have some US process after the ESPPU
 - Likely requires Reference Design
- LDG wants to maintain momentum
 - EU Roadmap continues

Continue together to develop green field concept

- Avoid becoming site specific before funding agencies put the resources on the table
- Develop site specific versions as derived approaches

Note: IMCC will prepare all reports together as a global community

Technology Maturity

Important timeline drivers:

- Magnets
 - HTS technology available for solenoids (expect mature for production in 15 years)
 - Nb₃Sn available for collider ring, maybe lower performance HTS (expect in 15 years)
 - High performance HTS available for collider ring (may take more than 15 years)
- **Muon cooling technology and demonstrator** (expect demonstrator operational in <10 years, with enough resources, allows to perform final optimization of cooling technology)
- Detector technologies and design (expect in 15 years)

Other technologies are also instrumental for performance, cost, power consumption and risk mitigation

• but believe that sufficient funding can accelerate their development sufficiently

Other important considerations for the timeline are

- Civil engineering
- Decision making
- Administrative procedures

MuCol

Energy staging

- Start at lower energy
- Current 3 TeV, design takes lower performance into account
- Splits cost, little increase in integrated cost

Luminosity staging

- Start at with full energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)
- Consider reusing LHC tunnel and other infrastructures

Staging

Tentative Timeline (Fast-track 10 TeV)

Timeline with Magnets

Site Studies

Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Study is mostly site independent

- Main benefit is existing infrastructure
- Want to avoid time consuming detailed studies and keep collaborative spirit
- Will do more later

MuCol

Some considerations are important

- Neutrino flux mitigation at CERN
- Accelerator ring fitting on FNAL site

Potential site next to CERN identified

- Mitigates neutrino flux
 - Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)

D. Schulte, Muon Collider, INFN, May 2024

Use of SPS and LHC Tunnels

Filling factor of green field studies for the arcs Consider hybrid and non-hybrid designs

Use robust assumptions for the magnets (10 T static and 1.8 T ramping magnets)

		Scenario 1	Scenario 2a	Scenario 2b
SPS	RCS 1	380*	380*	380*
	RCS 2		860	860
LHC	RCS 3	1250*	2700	2700
	RCS 4			4000

Stronger magnets or better filling factors would allow 10 TeV

Need to confirm whether LHC cross section can house two RCSs

Example CERN Site

First look is promising:

- Collider ring mitigates neutrino flux from experiments
 - Some work required to ensure adjacent arcs are negligible
- Good connection to LHC tunnel
- Muon beam cooling complex on CERN land ٠ injecting into SPS

Collider ring (10 TeV) Both experiments on CERN land

Transferline maximum slope 6%

Several studies remain to be done

Cost Estimate

Led by Carlo Rossi, who also does it for CLIC

Cost estimate is based on Project Breakdown Structure

- Fill in information at the level it is available to us
- Identify uncertainties
- Make trade-offs
- But cannot optimize at this moment

Proton complex similar to SPL

Overall optimisation not yet done and probably needs time to fully conclude

Detailed studies ongoing of fast-ramping magnet and RF cost and trade-off

Collider Ring Magnets

Common assumptions about cost of superconductor development for FCC-hh and muon collider would be beneficial

We currently assume:

MuCol

- Nb3Sn cost remains constant
- HTS reduces by factor 3

3 TeV Design

R&D Programme

Broad R&D programme can be distributed world-wide

Muon cooling technology

- RF test stand to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator

MuCol

- At CERN, FNAL, ESS, JPARC, ...
- Workshop in October at FNAL

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Many other technologies are equally important now to support that the muon collider can be done and perform

Training of young people

Strong synergy with HFM Roadmap and RF efforts

Demonstrator

Two potential sites at CERN

1) On CERN land but outside of fence

- 80 kW from PS
- Site could handle 4 MW if SPL where installed
- Requires civil enginnering

2) In existing tunnel

- 10 kW from booster
- Using existing tunnel
- Need to explore how far we can go
 - Requires resources

Best strategy is to use site 2 initially and then later transfer equipment to site 1 if required

Synergies and Outreach

Training of young people

• Novel concept is particularly challenging and motivating for them

Technologies

- Muon collider needs HTS, in particular solenoids
- Fusion reactors
- Power generators
- Nuclear Magnetic Resonance (NMR)
- Magnetic Resonance Imaging (MRI)
- Magnets for other uses (neutron spectroscopy, detector solenoids, hadron collider magnets)
- Target is synergetic with neutron spallation sources, in particular liquid metal target (also FCC-ee)
- High-efficiency RF power sources and power converter
- RF in magnetic field can be relevant for some fusion reactors
- High-power proton facility
- Facilities such as NuStorm, mu2e, COMET, highly polarized low-energy muon beams
- Detector technologies
- Al and ML

Physics

Conclusion

R&D progress is increasing confidence that the collider is a unique, sustainable path to the future P5 strongly supports this view

• Plan to increase collaboration with the US

Started exploring the implementation at CERN using existing infrastructure

Looks promising including neutrino flux mitigation

Cost estimate has started

We expect that a first collider stage can be operational by 2050

- If the resources ramp up sufficiently
- If decision-making processes are efficient

Need to continue ramping up the momentum

Reserve

The country of the

Power and Environment

The compact footprint, limited cost and power consumption are intrinsic features that motivate the muon collider study in the first place. Reuse of existing infrastructure is further reducing the impact on the environnement.

Specific studies address the key power consumers:

• Superconducting magnets, fast-ramping magnets, normal- and superconducting RF systems, cooling of the components and their shielding

Can give some numbers on CO₂, where common database is available

Neutrino flux mitigation is being studied

Tentative Staged Target Parameters

Target integrated luminosities

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Need to spell out scenarios

Need to integrate potential performance limitations for technical risk, cost, power, ...

Parameter	Unit	3 TeV	10 TeV	10 TeV	10 TeV	llab
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	tbd	13	
Ν	10 ¹²	2.2	1.8	1.8	1.8	
f _r	Hz	-5	5/5	5	5	
P _{beam}	MW	5.3	14.4	14.4	14.4	
С	km	4.5	10	15	15	
	т	7	10.5	SZ	7	
ε	MeV m	7.5	7.52	7.5	7.5	
σ _E / E	%	0.1	0.1	tbd	0.1	
σ _z	mm	5	1.5	tbd	15	
β	mm	5	1.5	tbd	1.5	
3	μm	25	25	25	25	S
$\sigma_{x,y}$	μm	3.0	0.9	1.3	0.9	223

- ~ -

Focus on HTS development O(10 Meur) request

Strategy and context

Material and technology

Three core components (6 MEUR)

- 40 T solenoid, 50 mm bore
- 10 T/10 MJ/300 mm solenoid
- HTS undulator

Test infrastructure

D. Schulte, Muon Collider, Birmingham, July 2024

Proposal: EuMAHTS

Short name

Status

В

В

В

В

В

B B

В

В

В

В

В

В

В

В

Α

Α

А

Α

А

Α

Country

IERO

Belgium

Finland

France

France

Germany

Germany Germany

Italy

Italy

Netherlands

Poland

Poland

Spain

Spain

Switzerland

Switzerland

Switzerland

France

Germany

Netherlands

	CERIN
WP1 - Coordination and Communication	EMFL
(L. Bottura, P. Vedrine)	TAU
WP2 – Strategic Roadmap	CEA
(A. Ballarino, L. Rossi)	ESRF
WP3 – Industry Co-innovation	EUXFEL
(J.M. Perez, S. Leray)	GSI
WP4 – HTS Magnets Applications Studies	KIT
(P. Vedrine, M. Statera)	INFN
WP5 – Materials and Technologies	UMIL
(D. Bocian. A. Bersani)	UTWENTE
WP6 – 40T-class all-HTS solenoid	IFJ-PAN
(B. Bordini, P. Vedrine)	РК
WP7 – 10T/10MJ-class all-HTS solenoid	CIEMAT
(S. Sorti, C. Santini)	CSIC
WP8 – K=2 all-HTS undulator	PSI
(S. Casalbuoni, M. Calvi)	TERA-CARE
WP9 – Test Infrastructures	UNIGE
(C. Willering F. Deneduce)	CNRS
(G. Willering, E. Beneduce)	HZDR
	RU-NWO

IMCC Organisation

Collaboration Board (ICB)

- Elected chair: Nadia Pastrone
- 50 full members, 60+ total

Steering Board (ISB)

- Chair Steinar Stapnes
- CERN members: Mike Lamont, Gianluigi Arduini
- ICB members: Dave Newbold (STFC), Mats Lindroos (ESS), Pierre Vedrine (CEA), N. Pastrone (INFN), Beate Heinemann (DESY)
- Study members: SL and deputies

Advisory Committee

Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

Will integrated the US also in the leadership

CDR Phase, R&D and Demonstrator Facility

Two stage cryocooler

MuCol

Broad R&D programme can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

 look for an existing proton beam with significant power

With cryostat Coil support structure The rock or regulsion and compression forces

M. Calviani, R. Losito, J. Osborn et al.

SC HTS coils

Different sites are being considered

- CERN, FNAL, ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- Could test it at CERN with proton beam

US P5: The Muon Shot

Particle Physics Project Prioritisation Panel (P5) supports US ambition to host a 10 TeV parton-parton collider

Endorses muon collider R&D: "This is our muon shot"

Recommend joining the IMCC Consider FNAL as a host candidate US is already particpating to the collaboration

US ambition:

- Want to reach a 10 TeV parton level collisions
- Timeline around 2050
- Fermilab option for demonstator and hosting
- Reference design in a "few" years

Informal discussion with DoE (Regina Rameika, A. Patwa):

- DoE wants to maintain IMCC as a global collaboration
- Addendum to CERN-DoE-NSF agreement should be in preparation

IMCC prepares options for Europe and for the US in parallel

MuCol (EU co-funded)

Started March 2023, lasts until early 2027

3 MEUR from the EU, the UK and Switzerland, about 4 MEUR from the partners, CERN leads and contributes

Final deliverable is a report on the full IMCC R&D results EU officer will come on 19th June.

Plan for ESPPU

Continue to perform studies on green field designs

- Collaboration with the US
- Lattice designs, component designs, beam dynamics

Provide parameter tables for the green field

Perform example civil engineering studies for CERN (collider and demonstrator)

- Looks promising at this moment
- The US will do similar studies for FNAL

Provide parameters tables for the implementation at CERN

- Scaled from green field design
- Do not have the resources and time to make detailed designs for CERN for ESPPU

Check cost for green field and CERN option

• Know early the relative cost because it may impact decisions

Muon decays in collider ring

MuCol

- Impact on detector
- Have to avoid dense neutrino flux

Aim for **negligible impact from arcs**

- Similar impact as LHC
- At 10 TeV go from acceptable to negligible with mover system
 - Mockup of mover system planned
 - Impact on beam to be checked

Impact of experimental insertions

- 3 TeV design acceptable with no further work
- But better acquire land in direction of straights, also for 10 TeV
- Detailed studies identified first location and orientation close to CERN
 - Poiint to uninhabited area in Jura and Mediterranian sea

Detailed studies by RP and FLUKA experts

- Impact on surface
- Considering buildings

Fig. 7.23: Mock-up of the proposed magnet movement system.

Cost Uncertainty

MuCol

Key cost drivers are based on sound models

• E.g. RCS with trade-off between RF and magnet cost

A part of the cost will be based on scaling from other projects

- A part of the cost depends on future developments of technology beyond our study
- E.g. cost of superconductor

Major cost optimisations remain to be done in the design

