

HALHF: **A Hybrid, Asymmetric, Linear Higgs Factory**

Richard D'Arcy

University of Oxford

Brian Foster, Carl A. Lindstrøm

University of Oxford/DESY & University of Oslo

15th May 2024 | RAL Particle Physics Seminar

Outline

- > Motivation
- > Concept
- > Design
- > Upgrade paths
- > R&D plan
- > Timeline & Staging
- > Conclusions

Motivation: Realising the next generation of HEP machines

> Post-LHC era approaches (~2040)

> **Next**: Electron–positron collider

> Precision studies of the Standard Model (Higgs, etc.)

Future Circular Collider. Source: CERN

Motivation: Realising the next generation of HEP machines

> Post-LHC era approaches (~2040)

>Next: Electron-positron collider

> Precision studies of the Standard Model (Higgs, etc.)

> Estimated cost (Snowmass ITF):

> FCC-ee ≈ \$14.6B

> ILC ≈ \$7.3B

Future Circular Collider. Source: CERN

Challenge: Current accelerator technology at a performance plateau

Radio-frequency cavity

Size of high-energy machines driven by RF accelerating gradient (<100 MV/m) → expensive!

Challenge: Current accelerator technology at a performance plateau

Radio-frequency cavity

UNIVERSITY OF OXFORD

Size of high-energy machines driven by RF accelerating gradient (<100 MV/m) \rightarrow expensive!

> EU Strategy for Particle Physics 2020:

- "... intensification of R&D is required."
- e.g. "Development and exploitation of plasma acceleration techniques"

Solution: Plasma Accelerators

Wake excitation

Particle acceleration

Solution: Plasma Accelerators

Charge-density wave in plasma

Harnesses the enormous fields experienced at inter-atomic scales

electron (•) + ion (•) 'soup'

snowplow effect

Solution: Plasma Accelerators

Charge-density wave in plasma

Harnesses the enormous fields experienced at inter-atomic scales

Higher gradients (GV/m or higher) → *shorter and cheaper accelerators!*

Particle physicists have requirements in addition to high energy

average power

Particle physicists have requirements in addition to high energy

> Excellent experimental progress made in recent years > In particular at cutting-edge facilities such as **FLASHFORWARD** (DESY, Hamburg)

Recent progress in Plasma Accelerator R&D at FLASHFORWARD

>Towards high beam quality:

- > Energy-spread preservation (**%-level**)
- > Transverse emittance preservation (µm-level)

C.A. Lindstrøm et al., (under review at Nat. Commun.)

Recent progress in Plasma Accelerator R&D at FLASHFORWARD

>Towards high beam quality:

- > Energy-spread preservation (%-level)
- > Transverse emittance preservation (µm-level)

> Towards high power-transfer efficiency:
 > [1] Drive Beam → Wakefield (~50%) _____
 > [2] Wakefield → Accelerating Beam (~40%)

Recent progress in Plasma Accelerator R&D

>Towards high beam quality:

- > Energy-spread preservation (%-level)
- > Transverse emittance preservation (µm-level)
- >Towards high power-transfer efficiency: > [1] Drive Beam \rightarrow Wakefield (~50%) > [2] Wakefield - Accelerating Beam (~40%)
- > Towards high repetition rate and average power: > Rapid plasma recovery time (10 MHz → higher than required for ILC)

30

Bunch separation (ns)

10

20

plasma recovery at 63 ns

50

60

40

90

Outline

- > Motivation
- > Concept
- > Design
- > Upgrade paths
- > R&D plan
- > Timeline & Staging
- > Conclusions

Developing a credible plasma-based e+e- collider design

>Excellent experimental progress suggests hope for a plasma-based e+e- collider
>Several proposals over the past decades:
> Rosenzweig et al. (1996)
> Pei et al. (2009)
> Schroeder et al. (2010)
> Adli et al. (2013)

Source: Pei et al., Proc. PAC (2009)

Source: Adli et al., Proc. Snowmass (2013)

Developing a credible plasma-based e⁺e⁻ collider design

>Excellent experimental progress suggests hope for a plasma-based e⁺e⁻ collider >Several proposals over the past decades: > Rosenzweig et al. (1996) > Pei et al. (2009) > Schroeder et al. (2010) > Adli et al. (2013)

>Very useful exercises to focus R&D

>One key stumbling block has been identified...

Source: Pei et al., Proc. PAC (2009)

Source: Adli et al., Proc. Snowmass (2013)

Main problem: Positron acceleration in plasma

>**Plasma** = charge asymmetric

> No 'blowout regime' for e^+

Source: Litos et al. Nature 515, 92 (2014), Corde et al. Nature 524, 442 (2015).

2	4

Page 17

Main problem: Positron acceleration in plasma

>**Plasma** = charge asymmetric

> No 'blowout regime' for e^+

>Positron acceleration has been demonstrated

> > Several schemes proposed to improve beam quality — but lack of e^+ test facilities

>Currently, *luminosity per power* still ~1000x below RF and e^-

Source: Litos et al. Nature 515, 92 (2014), Corde et al. Nature 524, 442 (2015).

4	2	4

Main problem: Positron acceleration in plasma

>**Plasma** = charge asymmetric

> No 'blowout regime' for e^+

> Positron acceleration has been demonstrated

> > Several schemes proposed to improve beam quality — but lack of e^+ test facilities

>Currently, *luminosity per power* still ~1000x below RF and e^-

>Main challenge: Electron motion (equivalent to ion motion for e^{-1} but plasma electrons are lighter)

Source: Litos et al. Nature 515, 92 (2014), Corde et al. Nature 524, 442 (2015).

4	2	4

The pragmatic approach:

The pragmatic approach: use plasma to accelerate electrons

The pragmatic approach: use plasma to accelerate electrons but RF to accelerate positrons

R. D'Arcy | RAL Particle Physics Seminar | May 2024 | Rutherford Appleton Laboratory

Can we use asymmetric e+/e- energies to reduce cost?

> Minimum centre-of-mass energy required for Higgs factory: $\sqrt{s} \approx 250 \text{ GeV}$

Can we use asymmetric e+/e- energies to reduce cost?

> Minimum centre-of-mass energy required for Higgs factory: $\sqrt{s} \approx 250 \text{ GeV}$

Can we use asymmetric e+/e- energies to reduce cost?

> Minimum centre-of-mass energy required for Higgs factory:

> Electron (*E_e*) and positron energies (*E_p*) must follow: $E_e E_p = s/4$ > However, the collision products are boosted (γ): $\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$

for Higgs factory: $\sqrt{s} \approx 250 \text{ GeV}$

Can we use asymmetric e⁺/e⁻ energies to reduce cost?

> Minimum centre-of-mass energy required for Higgs factory:

 $E_e E_p = s/4$ > Electron (E_e) and positron energies (E_p) must follow: > However, the collision products are boosted (γ): $\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$

> A reasonable (but not necessarily optimized) choice is: > Electrons (from PWFA): > Positrons (from RF accelerator): > Boost: (HERA had a boost of $\gamma \approx 3$)

√s ≈ 250 GeV

- $E_e = 500 \text{ GeV}$ (4x higher)
- (4x lower) $E_{p} = 31 \,\,{\rm GeV}$
- y = 2.13

Simulating asymmetric e^+/e^- collisions

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z~(\mu{ m m})$	$N (10^{10})$	$\epsilon_{nx} \ (\mu m)$	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \ (\mathrm{mm})$	$\mathcal{L} \; (\mu \mathrm{b}^{-1})$	$ \mathcal{L}_{0.01} \ (\mu b^{-1}) $	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1

ILC params

Simulating asymmetric e^+/e^- collisions

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \ (\mathrm{mm})$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13

>Asymmetric energies lead to a slight reduction in the geometric luminosity $>\beta$ functions are scaled accordingly to maintain the beam size at the IP

ILC params

Simulating asymmetric e^+/e^- collisions

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z \ (\mu m)$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

Use shorter bunches to compensate for smaller IP beta functions

>Asymmetric energies give similar luminosity >However, more power is required (to boost the collision products)

ILC params

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$ \mathcal{L}_{0.01} (\mu b^{-1}) $	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

>The luminosity scales as: $\mathscr{L} \sim N_{e} N_{e^+}$

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	$\epsilon_{nx} (\mu m)$	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

>The luminosity scales as: $\mathscr{L} \sim N_{\rho} - N_{\rho^+}$ >Can we use more (low-energy) positrons and less (high-energy) electrons? Yes > Power usage increase: $\frac{P}{P_0} = \frac{N_{e^-}E_{e^-} + N_{e^+}E_{e^+}}{N\sqrt{s}}$

UNIVERSITY OF OXFORD

$$- + N_{e^+}E_{e^+}$$

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	$\epsilon_{nx} (\mu m)$	$\epsilon_{ny} (\mathrm{nm})$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$ \mathcal{L}_{0.01} (\mu b^{-1}) $	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

>The luminosity scales as: $\mathscr{L} \sim N_{\rho} - N_{\rho^+}$ >Can we use more (low-energy) positrons and less (high-energy) electrons? Yes > Power usage increase: $\frac{P}{P_0} = \frac{N_{e^-}E_{e^-} + N_{e^+}E_{e^+}}{N\sqrt{s}}$

>Unchanged power usage if $N_e/N_p = E_p/E_e$ (here: 4x more e^+ , 4x less e^-)

> But, producing positrons is problematic—instead use 2x more e^+ , 2x less e^-

E (GeV)	$\sigma_z~(\mu{ m m})$	$N (10^{10})$	$\epsilon_{nx} \ (\mu m)$	$\epsilon_{ny} (nm)$	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	$\mathcal{L} \; (\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25

>The luminosity scales as: $\mathscr{L} \sim N_{\rho} - N_{\rho^+}$ >Can we use more (low-energy) positrons and less (high-energy) electrons? Yes > Power usage increase: $\frac{P}{P_0} = \frac{N_{e^-}E_{e^-} + N_{e^+}E_{e^+}}{N\sqrt{s}}$

>Unchanged power usage if $N_e/N_p = E_p/E_e$ (here: 4x more e^+ , 4x less e^-)

> But, producing positrons is problematic—instead use 2x more e^+ , 2x less e^-

Going all-in: Asymmetric emittances ease beam-quality needs

E (GeV)	$\sigma_z \ (\mu m)$	$N (10^{10})$	$\epsilon_{nx} \ (\mu m)$	$\epsilon_{ny} (nm)$	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25

>Geometric emittance scales as (energy)⁻¹ \rightarrow can this help us?

Going all-in: Asymmetric emittances ease beam-quality needs

E (GeV)	$\sigma_z \ (\mu m)$	$N (10^{10})$	$\epsilon_{nx} \ (\mu m)$	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} \; (\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25

> Geometric emittance scales as (energy)⁻¹ \rightarrow can this help us?

> Conversely, electrons can have a larger IP beta function

 $>e^+$ must have smaller IP beta function (lower energy): 3.3/0.1 mm (CLIC-like \rightarrow possible)

Going all-in: Asymmetric emittances ease beam-quality needs

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

> Geometric emittance scales as (energy)⁻¹ \rightarrow can this help us?

> Conversely, electrons can have a larger IP beta function

> Apply similar principle for the e^- (normalised) emittance

> Significantly reduces emittance requirements from PWFAs!

- $> e^+$ must have smaller IP beta function (lower energy): 3.3/0.1 mm (CLIC-like \rightarrow possible)

Outline

> Motivation > Concept

> Design

- > Upgrade paths
- > R&D plan
- > Timeline & Staging
- > Conclusions

Guiding strategy: Minimise the required innovation

>*Risks multiply* \rightarrow need to keep the overall risk as low as possible

Guiding strategy: Minimise the required innovation

>*Risks multiply* \rightarrow need to keep the overall risk as low as possible > There has been a great deal of technology development for colliders already

- > Focused on replacing the main linac with minimal (but not zero) changes elsewhere
- > Explicitly chose not to 'plasma-ify' everything (injectors, drivers, final focusing, etc.)

Source: Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023)

Source: Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023)

>**Beam-driven**: Use e^+ RF linac for producing e^- drivers

Source: Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023)

>**Beam-driven**: Use e^+ RF linac for producing e^- drivers

>**Overall footprint**: ~3.3 km

> Length dominated by e^- beam-delivery system

>**Overall footprint**: ~3.3 km

>**Overall footprint**: ~3.3 km

- > Fits in most major particle-physics laboratories

The foundation: A dual-purpose RF linac

RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	\mathbf{MW}	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20

>Gradient: 25 MV/m

>RF linac length: ~1.25 km

>Assumes 50% efficient acceleration

The foundation: A dual-purpose RF linac

RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	\mathbf{MW}	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20

>Gradient: 25 MV/m

>**RF linac length**: ~1.25 km

>Assumes 50% efficient acceleration

- > Bunch-train pattern must be compatible with PWFA stages - *active research topic at Oxford*:
 - > Normal-conducting RF? Burst-mode (100) bunches @ 100 Hz)?
 - > Super-conducting RF? Continuous wave (10 kHz)?

S)	
,	
	F

The novelty: A multistage plasma-based linac

>Length: 16 PWFA stages (5-m long): ~400 m total length

PWFA linac param

Number of stages Plasma density In-plasma accelera Average gradient Length per stage^a Energy gain per st Initial injection en Driver energy Driver bunch popu Driver bunch lengt Driver average bea Driver bunch sepa Driver-to-wake effi Wake-to-beam effic Driver-to-beam eff Wall-plug-to-beam Cooling req. per st

neters		
		16
	cm^{-3}	$1.5 imes 10^{16}$
tion gradient	GV/m	6.4
(incl. optics)	GV/m	1.2
	m	5
$\mathrm{tage}^{\mathrm{a}}$	GeV	31.9
ergy	GeV	5
	GeV	31.25
ulation	10^{10}	2.7
$ ext{th} (ext{rms})$	$\mu{ m m}$	27.6
am power	MW	21.4
ration	\mathbf{ns}	5
iciency	%	74
ciency	%	53
ficiency	%	39
a efficiency	%	19.5
tage length	kW/m	100

The novelty: A multistage plasma-based linac

Length: 16 PWFA stages (5-m long): ~400 m total length *Gradient*: 6.4 GV/m (in plasma)—1.2 GV/m (average) *Efficiency*: 38% = 72% (wake input) x 53% (wake extraction)

Simulated with Wake-T Plasma density: 7 x 10¹⁵ cm⁻³ Driver/witness charge: 4.3/1.6 nC

neters		
		16
	cm^{-3}	$1.5 imes 10^{16}$
tion gradient	GV/m	6.4
(incl. optics)	GV/m	1.2
、 <u>-</u> ,	m	5
age^a	${\rm GeV}$	31.9
ergy	GeV	5
	${\rm GeV}$	31.25
ilation	10^{10}	2.7
h (rms)	$\mu{ m m}$	27.6
am power	MW	21.4
ration	\mathbf{ns}	5
ciency	%	74
ciency	%	53
iciency	%	39
efficiency	%	19.5
tage length	kW/m	100

The novelty: A multistage plasma-based linac

>Length: 16 PWFA stages (5-m long): ~400 m total length >Gradient: 6.4 GV/m (in plasma) – 1.2 GV/m (average) >*Efficiency*: 38% = 72% (wake input) x 53% (wake extraction) > No damping ring required due to high-emitta

PWFA linac parar

Number of stages Plasma density In-plasma accelera Average gradient Length per stage^a Energy gain per st Initial injection en Driver energy Driver bunch popu Driver bunch leng Driver average bea Driver bunch sepa Driver-to-wake eff Wake-to-beam effi Driver-to-beam eff Wall-plug-to-beam Cooling req. per st

ance	е	le	ct	ro	n	S

	16
cm^{-3}	$1.5 imes 10^{16}$
GV/m	6.4
GV/m	1.2
m	5
GeV	31.9
GeV	5
GeV	31.25
10^{10}	2.7
$\mu { m m}$	27.6
MW	21.4
\mathbf{ns}	5
%	74
%	53
%	39
%	19.5
kW/m	100
	cm^{-3} GV/m GV/m m GeV GeV GeV 10 ¹⁰ μ m MW ns % % kW/m

Simulated with Wake-T Plasma density: 7 x 10¹⁵ cm⁻³ Driver/witness charge: 4.3/1.6 nC

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible \rightarrow not exact > European accounting (2022 \$): \sim \$1.9B (\sim 1/4 of ILC TDR cost @ 250 GeV) \$2.3–3.9B > US accounting ("TPC"): (\$4.6B from ITF model for RF accelerators)

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	cost		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^e$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible \rightarrow not exact

> US accounting ("TPC"): **\$2.3–3.9B** (\$4.6B from ITF model for RF accelerators)

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^e$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

> European accounting (2022 \$): \sim \$1.9B (\sim 1/4 of ILC TDR cost @ 250 GeV)

> Dominated by conventional collider costs (97%) — PWFA linac only ~3% of the cost

Rough cost estimates for HALHF

> Scaled from existing collider projects (ILC/CLIC) where possible \rightarrow not exact

> US accounting ("TPC"): **\$2.3–3.9B** (\$4.6B from ITF model for RF accelerators)

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	$\cos t$	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by $6^{\rm b}$	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^{e}$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

> Estimated **power usage is ~100 MW** (similar to ILC and CLIC): >21 MW beam power + 27 MW losses + 2×10 MW damping rings + 50% for cooling/etc.

> European accounting (2022 \$): **~\$1.9B** (**~1/4 of ILC TDR cost** @ 250 GeV)

> Dominated by conventional collider costs (97%) — PWFA linac only ~3% of the cost

Outline

- > Motivation
- > Concept
- > Design
- > Upgrade paths
- > R&D plan
- > Timeline & Staging
- > Conclusions

Upgrades: **Polarised positrons**

> Produce e+ polarisation via ILC-like scheme:

- > **Pro:** minimally disrupted electron beam
- > **Pro**: ideas exist for E(e-) 500 GeV
- > **Con**: wiggler probably longer and more expensive >Cost 5–10% of original cost (+ \sim 100M \in)

Upgrades: 380 GeV centre of mass

> Operation at the t-tbar threshold (346 GeV) typically motivates a c.o.m. up to 380 GeV

- > ... which is in fact the minimum energy proposed for CLIC > Two options:
 - > 31 GeV positrons / **1165 GeV electrons** (more plasma stages, higher y, lower efficiency) \rightarrow +1 km PWFA linac
 - > 47.5 GeV positrons / 760 GeV electrons (same # of [longer] stages, same y as original) \rightarrow +130 m PWFA linac
- >Second option preferred
 - > Increased length ~10%
 - > Added cost ~10%
 - > ~25% more power overall

> Single IP traditionally seen as problematic for linear colliders

Single IP traditionally seen as problematic for linear collidersOpportunity for HALHF:

- > Overlap/reuse the high-energy electron BDS
- > Overall footprint increases only marginally

> Opportunity for HALHF:

Upgrade: TeV y-y collider (optical laser version)

>Collide 500 GeV y beams (up to 1 TeV c.o.m. with original HALHF scheme)

Upgrade: TeV y-y collider (optical laser version)

> Collide 500 GeV y beams (up to 1 TeV c.o.m. with original HALHF scheme)

$>\gamma$ produced from Compton backscattering off lasers \rightarrow technology does not yet exist

Upgrade: TeV y-y collider (optical laser version)

> Collide 500 GeV y beams (up to 1 TeV c.o.m. with original HALHF scheme)

- $>\gamma$ produced from Compton backscattering off lasers \rightarrow technology does not yet exist
- > Several additional challenges:
 - > Requires lower emittances (but can have round beams)
 - > Requires shorter BDS
 - > Laser technology (*very high power*) currently does not exist

Upgrade: TeV y-y collider (XFEL version)

>New concept from C³/SLAC colleagues > Use X-rays instead of optical laser

Barklow et al., arXiv:2203.08484 (2022)

Upgrade: **TeV y-y collider** (XFEL version)

>New concept from C^3 /SLAC colleagues > Somewhat advanced but has benefits:

Barklow et al., arXiv:2203.08484 (2022)

Upgrade: TeV y-y collider (XFEL version)

>New concept from C^3 /SLAC colleagues > Somewhat advanced but has benefits:

photon scientists may wish to collaborate

Outline

- > Motivation
- > Concept
- > Design
- > Upgrade paths
- > R&D plan
- > Timeline & Staging
- > Conclusions

>High-charge positron source (2x charge compared to ILC)

Sketch of ILC positron source

>High-charge positron source (2x charge compared to ILC) >High-efficiency (heavily beam loaded) RF linac with PWFA-compatible beams

>High-charge positron source (2x charge compared to ILC) >High-efficiency (heavily beam loaded) RF linac with PWFA-compatible beams >Beam-delivery systems:

- > Small beta functions (3.3 x 0.1 mm)
- > Could it be shorter since the emittance is much higher? (would reduce HALHF footprint considerably)

>High-charge positron source (2x charge compared to ILC) >High-efficiency (heavily beam loaded) RF linac with PWFA-compatible beams >Beam-delivery systems:

- > Small beta functions (3.3 x 0.1 mm)
- > Could it be shorter since the emittance is much higher? (would reduce HALHF footprint considerably)

>Conventional accelerator expertise required!

> Towards high energy:

- > Staging with full beam transmission
- > Multi-stage driver distribution

> Towards high energy:

- > Staging with full beam transmission
- > Multi-stage driver distribution

From: Pfingstner et al. (Proc. IPAC 2016)

From: Steinke et al., Nature 530, 190 (2016).

>Towards high energy:

> Staging with full beam transmission

> Multi-stage driver distribution

> Towards high beam quality:

- > Transverse and longitudinal stability
- > Spin-polarisation preservation

From: Vieira et al. PR-STAB 14, 071303 (2011)

From: Lindstrøm et al., PRL 126, 014801 (2021)

>Towards high energy:

> Staging with full beam transmission

> Multi-stage driver distribution

>Towards high beam quality:

- > Transverse and longitudinal stability
- > Emittance and energy-spread preservation
- > Spin-polarisation preservation
- > Towards high beam power:
 - > High-overall efficiency (wall-plug to beam)
 - > Repetition rate
 - > Plasma-cell cooling research at Oxford

Innovations required: Physics / Detector Studies

>Asymmetric beam energies \rightarrow boosted topologies ($\gamma \sim 2$) >Lower than HERA boost ($\gamma \sim 3$)... but different physics

ZEUS detector at HERA

Innovations required $M_{\text{Bash}}^{e^+e^- \rightarrow Z(\mu^+\mu^-)H}$

- correct tracking.
- >Asymmetric beam energies \rightarrow boosted topologies ($\gamma \sim 2$)
- > Lower than HERA boost. (yess Bever. abut > different physics... resolution.
 - $\sigma_{\text{ILD}_{\odot}\text{HALHF}} = 2.2 \times \sigma_{\text{ILD}_{\odot}\text{ILC}}$
- > Preliminary investigation of the HALHF parameters for the ILD with a long barrel shows promise $1.2 \times \sigma_{\text{ILD}_{\text{ell}}\text{ILD}}$
- >A 'real' detector design required

Detector: ILD with fast simulation (SGV), including

Resolution loss due muons being boosted forward:

Innovations required $M_{\text{Bash}}^{e^+e^- \rightarrow Z(\mu^+\mu^-)H}$

- correct tracking.
- >Asymmetric beam energies \rightarrow boosted topologies ($\gamma \sim 2$)
- >Lower than HERA boost. (yess Belver. abult > different physics... resolution.
 - $\sigma_{\text{ILD}_{\odot}\text{HALHF}} = 2.2 \times \sigma_{\text{ILD}_{\odot}\text{ILC}}$
- > Preliminary investigation of the HALHF parameters for the ILD with a long barrel shows promise $1.2 \times \sigma_{\text{ILD}_{\text{ell}}}$
- >A 'real' detector design required

> Particle physics expertise required!

Detector: ILD with fast simulation (SGV), including

Resolution loss due muons being boosted forward:

Outline

- > Motivation
- > Concept
- > Design
- > Upgrade paths
- > R&D plan
- > Timeline & Staging
- > Conclusions

>Short term (0–5 yrs): Pre-CDR* & CDR

*Feasibility study to be submitted as input to the next ESPP Strategy Update (deadline 31st March 2025)

	Timeline (approximation	
0–5 years	5–10 years	10
Pre-CDR & CDR (HALHF)		
Simulation study to determine self-consistent parameters (demonstration goals)		
First proof-of-principle experimentation		

>Short term (0–5 yrs): Pre-CDR* & CDR

>*Near term (0–10 yrs):* Much Plasma R&D required!

	Timeline (ap	proximat
0–5 years	5–10 years	10
Pre-CDR & CDR (HALHF) Simulation study to determine self-consistent parameters (demonstration goals) First proof-of-principle experimentation	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive), preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling, high wall-plug efficiency (e- drivers), and spin polarisation	

e / aggressive / aspirational)

-15 years

15–20 years

20+ years

R&D (exp. & theory)

Feasibility study

HEP facility (earliest start of construction)

> Decouple the challenge:

> Free-electron lasers (FELs) need 'low' energy (single stage) at high repetition rate

X-ray FEL

Image source: G. Stewart/SLAC.

> Decouple the challenge:

> Free-electron lasers (FELs) need 'low' energy (single stage) at high repetition rate

X-ray FEL

Image source: G. Stewart/SLAC.

test facilities exist

bunches / s⁻¹

>A dedicated staging facility is required to realise the necessary progress

Decouple the challenge:

- > Free-electron lasers (FELs) need 'low' energy (single stage) at high repetition rate
- > Strong-field QED needs 'high' energy (*multiple stages*) at low repetition rate

Strong-field QED

Source: Blackburn et al., Phys. Plasmas 25, 083108 (2018)

bunches / s⁻¹

>A dedicated staging facility is required to realise the necessary progress

Decouple the challenge:

- > Free-electron lasers (FELs) need 'low' energy (single stage) at high repetition rate
- > Strong-field QED needs 'high' energy (*multiple stages*) at low repetition rate

> Intermediate infrastructure for HEP use:

- > Test-beam facility for detector development
- > Fixed-target exp for dark-matter search
- > Plasma-based electron linac for LHeC

>Short term (0–5 yrs): Pre-CDR & CDR

Timeline (approximate / aggressive / aspirational)				
0–5 years	5–10 years	10–15 years	15–20 years	20+ years
Pro-CDR & CDR (HALHE)	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e ⁻)		Feasibility study R&D (exp. & theory) HEP facility (earliest start of construction)
Simulation study to determine self-consistent parameters	Demonstration of: Preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling	Avg. power tech demonstrator X-ray FEL (20 GeV e-)		
(demonstration goals)				
experimentation				

>Near term (5–15 yrs): Tech. Demonstrators — strong-field QED, X-ray FEL, and beyond

>Short term (0–5 yrs): Pre-CDR & CDR >Long term (15–20 yrs): Delivery of HALHF — intense R&D required

Timeline (approximate / aggressive / aspirational)				
0–5 years	5–10 years	10–15 years	15–20 years	20+ years
Pre-CDR & CDR (HALHF)	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multistage tech demonstrator Strong-field QED experiment (25–100 GeV e [–])	(Facility upgrade)	Feasibility study R&D (exp. & theory) HEP facility (earliest start of construction)
Simulation study to determine self-consistent parameters	Demonstration of: Preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling	Avg. power tech demonstrator X-ray FEL (20 GeV e-)	(Facility upgrade)	
(demonstration goals) First proof-of-principle experimentation Comparison Comparison Comparison Demonstration High wall-plug efficiency (e- drivers R&D into conventional-accelerator & principle Comparison Demonstration High wall-plug efficiency (e- drivers	tration of: - drivers) & spin polarisation ator & particle-physics concepts	Higgs factory (HALHF) Asymmetric, plasma–RF hybrid collider (250–380 GeV c.o.m.)		

>Near term (5–15 yrs): Tech. Demonstrators — strong-field QED, X-ray FEL, and beyond

>Short term (0–5 yrs): Pre-CDR & CDR >Near term (5–15 yrs): Tech. Demonstrators — strong-field QED, X-ray FEL, and beyond >Long term (15–20 yrs): Delivery of HALHF — intense R&D required > Upgrades (20+ yrs): Upgrade path for HALHF (many options available)

	Timeline (approximat	
0–5 years	5–10 years	10
Pre-CDR & CDR (HALHF) Simulation study to determine self-consistent parameters (demonstration goals)	Demonstration of: Scalable staging, driver distribution, stabilisation (active and passive)	Multistage Strong-fie (25
	Demonstration of: Preserved beam quality, high rep. rate, plasma temporal uniformity & cell cooling	Avg. powe X-ray
	Demonstration of: High wall-plug efficiency (e ⁻ drivers) & sp	
First proof-of-principle experimentation	R&D into conventional-accelerator &	
	Energy-efficient positron ultra-low emittances,	Dem acceleration i energy recove

te / aggressive / aspirational)			
-15 years	15–20 years	20+ years	
e tech demonstrator eld QED experiment 5–100 GeV e [–])	(Facility upgrade)	Feasibility study R&D (exp. & theory) HEP facility (earliest start of construction)	
er tech demonstrator FEL (20 GeV e [_])	(Facility upgrade)		
oin polarisation le-physics concepts	Higgs factory (HALHF) Asymmetric, plasma–RF hybrid collider (250–380 GeV c.o.m.)	(Facility upgrade)	
nonstration of: in plasma, high wall-plug efficiency (laser drivers), ery schemes, compact beam-delivery systems		Multi-TeV e+–e-/γ–γ collider Symmetric, all-plasma-based collider (> 2 TeV c.o.m.)	

HALHF Collaboration

> HALHF Kick-off meeting (DESY)

> 23/10/23

> HALHF Monthly meetings (online)

> 18/12/23, 29/01/24, 26/02/24

>HALHF Workshop (Oslo, Norway)

> 04-05/04/24

> HALHF 'Experts' meeting (Erice, Sicily) > 03-08/10/24

Interested? Get in touch!

Conclusions – HALHF

- > HALHF benefits from maximal asymmetry: energy charge emittance
- > High risk/high reward: less mature than RF technology but cost is only 'national-scale' (few \$B)
- > Upgrade path to higher energy and output possible: not just a one-trick pony
- > Much targeted (plasma and RF) R&D still required: a decade of significant work
- > Challenges outlined by the community identify issues requiring more R&D: help to guide design decisions towards 'HALHF 2.0'

> The HALHF concept proposes a compact, cheaper, greener, possibly quicker Higgs factory

