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High Intensity Proton Accelerator Facility (HIPA)

Cyclotron World Record 
Holder for

Beam Power

High Intensity Proton Accelerator Facility (HIPA)
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590 MeV proton energy

current up to 2.4 mA (1.4 MW)

approx. 8 µm rad emittance

approx. 2x10-4 relative losses

~20% grid-to-beam efficiency



Swiss Muon Source (S S & CHRISP) μSwiss Muon Source (SµS & CHRISP)
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Target M (mince) – 5mm graphite

designed for π production (low rate)

πM3: 10-40 MeV/c (surface) µ+ for µSR

πM1: 10-300 MeV/c π à µ/e for tests/PP 

Target E (epaisse) – 40mm graphite

designed for π/µ production (high rate) 

πE5: 20-120 MeV/c high rate µ for PP

µE4: 10-40 MeV/c µ+ for LEM – µSR and PP

πE3: 10-40 MeV/c (surface) µ+ for bulk µSR

µE1: 60-120 MeV/c µ for µSR (and MIXE?)

πE1: 10-120 MeV/c µ for µSR, MIXE, PP



MIXE at beamline E1πMIXE at beamline πE1 
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• High intensity π beamline at target E
- cloud µ– from π– decay

• All past MIXE campaigns hosted at πE1.2
- non-permanent installation
- approx. 3 weeks beam time per year

• Momentum acceptance
- selectable via FSH52 slit pair
- Δp/p ≈ 1 – 8 % FWHM

• Typical µ– energies: 15-50 MeV/c
• Rates from 103 up to 105 µ–/s on target
- close to ideal sampling rate (CW beam!)
- For the “average” sample, we collect 

enough statistics within ~1 hour
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GIANT
GermanIum Array for Non-destructive Testing
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The GIANT Setup - Hardware RealityThe GIANT Setup – Hardware Reality

Page 12

• (Nearly) complete setup
- 8 freely rotating arms (currently 5)
- 4 BigMac HPGe per arm
- up to 30 HPGe detectors

- currently ~12 detectors
- shared between multiple experiments

• Reproducible positions and angles
• Setup time approximately 6 hours
• Supervised semi-automatic LN2 refill
• Sample station twin in control room
- Roughly 5 min sample change
- represents approx. 5-10% of the time 

an “average” sample is measured



Application to non-destructive elemental analysis

Biswas, S., Megatli-Niebel, I., Raselli, L. et al., https://doi.org/10.1186/s40494-023-00880-0

• Goal: automate elemental analysis of 
samples scanned with Muon beams, 
with application to GIANT detector at 
PSI 

• Procedure: 
➡Obtain muonic X-ray spectra 

from the GIANT detector 
➡Assume systematic errors model 

(peak spread, count noise level, 
background level) 

➡Use X-ray energies prediction 
from Mudirac for every element/
isotope 

➡Fit the spectra with a model 
➡Identify elements present 
➡Estimate their proportions inside 

the sample 
• Recent example: analysis of antique 

knob bow fibula (Bügelknopffibel) 
from Kaiseraugst/CH by S. Biswas et 
al. 2023



The Group-Sparse LASSO method

Simulation of BCR-691-C Copper alloy

• We start with a simulated “measured” spectrum

• Assume some peak spread, X-ray counts (for noise model), all of this assumed known

• Background is assumed known and divided out

• We have ~20 previously studied samples from standards, batteries, and cultural artifacts

• X-ray peaks heights assumed known

• Example simulated “measured” spectrum below

• Goal: fit a model to the spectrum with a wide range of elements, and perform element selection simultaneously



Group Sparsity for Modelling of Spectra

The spectra and features are binned into  bins at energies Then:

measured binned spectrum , with elements 
, typically .

feature matrix created from theory energy levels ,
, each feature  is a spectrum 

, which is a Dirac delta at X-ray emission 
energy , smoothed with the instrument response (currently 
Gaussian point spread function, assumed known) 

. Typically  for a large set of 
elements. 
All feature weights , can be split into groups 

. Each element group  contains multiple u
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• To identify the elements in the sample out of the 
periodic table, we need to solve a feature 
selection problem. 

• This warrants the use of generalised linear 
problems with sparsity. 

• However, the sparsity should be applied on the 
level of an element: if the element is selected, all 
its emission lines are expected to be non-zero. 

• This indicates a group-sparse approach, with the 
simplest method for this task is GroupLASSO.
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Full templates  for each element:Xgβg



Penalties: GroupLASSO vs LASSO vs Ridge

2

groups!



The Solver
Requirements for the GLM fast solver:
‣ Implemented group sparsity.
‣ Able to handle sparse , as it can be big .
‣ Include positive bound on feature weights .
‣ Fast optimisation with state-of-the-art techniques for sparse problems.
‣ Very fast results, ~ 1 second per fit

X ∼ 200k × 2k
β ≥ 0

Solution: SKGLM scikit-learn replacement for sparse GLMs [3]. 
‣ The code is still in alpha, needed to implement additional features. Actively 

contributing to the development of this package.
‣ The optimisation engine for GroupLASSO uses block coordinate descent, and 

converges in 10 sec for large sparse  matrices [3,4].

‣ Adding penalty for features within a group, controlled by target Pearson 
correlation level  [5]. This should give the user an option to require  
coefficients inside a single element group to vary together.

‣ Implemented GroupLasso with sparse feature matrices in the SKGLM, merge 
request in progress.

‣ Sparsity prior may add biases to fitted weights: re-fit with linear regression using 
selected elements

∼ X

ρ β



Fitting results for GroupLasso

Fit result:

Average weight per element (all lines), elements present in the sample marked with ▼



Comparison to baseline

The spectra and features are binned into  bins at energies Then:

measured binned spectrum , with elements 
, typically .

feature matrix created from sum of all theory energy levels 
, , templates  are a spectra

, each of which is a sum of Dirac deltas at X-ray 

emission energy  for a given element , multiplied by mudirac 
rate , smoothed with the instrument response (currently 
Gaussian point spread function, assumed known) 

. Typically  for a large set of elements. 

All feature weights 
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The spectra and features are binned into  bins at energies Then:

measured binned spectrum , with elements 
, typically .

feature matrix created from theory energy levels ,
, each feature  is a spectrum 

, which is a Dirac delta at X-ray emission 
energy , smoothed with the instrument response (currently 
Gaussian point spread function, assumed known) 

. Typically  for a large set of 
elements. 
All feature weights , can be split into groups 

. Each element group  contains multiple 
lines.
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Group-sparse solution with : Baseline: single template per element



Avoiding line confusion

• Problem: when fitting with a large range of 
elements, there may be high lines (K ) from trace 
elements overlapping with low lines (not K ), from 
a major abundant element

• Example: Cu alloy sample non-K  line overlapps 
with K  line from Mg, which is not present in the 
sample, which leads to false positive Mg detection 
during fitting with baseline method

• Group-sparse LASSO solution avoids this 
confusion

α
α

α
α

GroupLasso

Baseline



How much uncertainty on the “rates” can we tolerate?

• Problem: the “rates” for each transition are 
currently not well known, which can affect the 
analysis

• Experiment: create a spectrum simulation for a 
sample using the current rates, and perturb them 
with some scatter

• Currently using lognormal multiplicative noise 
model: , 

• Run 32 random realizations and for each perform a 
fit with a  elements

• Measure the number of false positive element 
detections as a function of 

• The true positive rate is usually 100%

• We can currently tolerate up to around 10% of 
uncertainty on the rates, but results still stable for 
20%, still acceptable up to 50%!

x̃ = x ⋅ s s ∼ lognorm(0,σ)

∼ 57

σ

Preliminary



Next steps

•Analyse multiple simulated samples
•Give estimates of the proportions of each element in the sample, with quality 
estimate

•Test the application to rapid spectrum analysis during a live experiment
•Publish the results and code package to the community


