Negative muon experiments at J-PARC MUSE

KEK IMSS Muon Science Laboratory Izumi UMEGAKI

J-PARC MUSE

We call proposals for three beamlines

 $\begin{array}{c} \textbf{S1} \\ \textbf{Surface muon / spectrometer} \\ \mu SR \\ measurement \end{array}$

D1 Decay \cdot Surface muon /spectrometer μ SR with DR for low temperatures μ SR with pressure cells Lifetime measurements Negative μ SR(μ -SR)

Insig

D2 Decay muon Elemental analysis Muonic atom Muon imaging Particle physics Experiments Soft error

Measurement system for elemental analysis

Nine Ge detectors can be installed in the Measurement System, hemispherical chamber.

Sample condition can be changed depending on experiments. (in vacuum, He atmosphere, air)

Measurement System

System with 9 detectors and a sample

Cultural heritages measured by muonic x-rays

Nagoya Castle (Aichi)

Collaborations with museums work well at J-PARC MSUE

Golden statues on the top Insight through Accelerators. **KEK**

褚方洪庵使用薬箱(2点) 右:壮年期 旧緒方栽吉氏蔵、左:晩年期 旧緒方惟之氏蔵

Japanese doctor's medical sample in a closed bottle in Edo era (1800s).

J-PARC MUSE's highlights

Muonic X-ray non-destructive element analysis of samples brought back by Hayabusa-II from Ryugu asteroid

J-PARC MUSE's highlights

3D imaging of muonic x-rays by CdTe detectors

PRESS RELEASE (2022.4.26) Successful Nondestructive 3D Elemental Analysis Using Elementary Particle Muons - New Technology Development by Quantum Beam Technology Meets Space Observation Detector

Three-dimensional elemental distribution is reproduced using 3D image reconstruction used in medical diagnosis. I - Huan Chiu et al., Scientific Reports 12, 5261 (2022)

J-PARC MUSE's highlights

Measurements on Japanese short sword made of steel. Limitation of small amount of carbon in steel is 140 ppm.

Lifetime measurements

Composition of elements can be investigated by the time spectra with lifetime of muons captured in the atoms.

Scientific Reports 14, 1797(2024).

Muon lifetime spectrum of a C content of 0.42 wt% steel. (left) Entire fitted region and the (right) 7300–12,000 ns region. The fitting results including each component of Fe, C, air and background are also shown.

Li-ion battery with muons Japan Muon and Meson Society Webpage

$$Li_{1-x}MO_2 \rightarrow xLi^+ + xe^- + MO_2$$
 (Cathode)
6C + Li^+ + e^- $\rightarrow C_6Li$ (Anode)

Schematic drawing of a LIB in charging process

http://jmeson.org/image/musr-video

Li ion diffusion in active materials $\rightarrow \mu SR$

J. Sugiyama *et al*.: PRL, **103**, (2009) 147601.

K. Ohishi *et al.*,: *ACS Phys. Chem Au* 2, 2, 98 (2022). I. Umegaki *et al.*,: *J. Phys. Chem. C* , 126, 25, 10506(2022).

Existence of Li in active materials

\rightarrow muonic x-rays

Insight through Accelerators.

M. Tampo *et al*.; submitted I. Umegaki *et al*.,;JPS Conf. Proceedings. 21, 011041(2018).

Diffusive phenomena observed by $\mu^{\pm}SR$

I. Umegaki et al., J. Phys. Chem. C, 126, 25, 10506-10514 (2022).

Results of μ -SR with low statistics help qualitative understanding. It is note that these results are not enough for quantitative discussion.

Safety issue and Metallic Li deposition

- A LIB is very popular
 Reuse and recovery of used LIBs is highly demanded in today's society
- Safety cost avoids promotion of reuse

 $Li^+ + e^- \rightarrow Li$

-exclusive over charge

-cold environment

-high charge rate

•An **inappropriate use** causes

for example;

metallic Li deposition

- Less Thermal Stability
 Short circuit
- Charge capacity degradation

It is desired to detect nondestructively metallic Li deposition in a LIB.

Insight through Accelerators.

Energy resolution to detect Li in a Li-ion battery

C Kα (2-1) 75 keV

: constant

Metallic Li can be detected with high sensitivity

Metallic Li can be detected with high sensitivity

I. Umegaki et al., Anal. Chem. (2020) 92,12,8194-8200.

Metallic Li can be detected with high sensitivity because Li in a charged anode graphite is relatively less observed.

Negative muon experiments at J-PARC MUSE

- Elemental analysis with muonic x-rays
- Negative μ SR (μ -SR)
- Lifetime measurements
- Soft error

Common or respective requirements are

- Calculation of muon stopping range in a sample
- Estimation of intensity of muonic x-rays
 - Ratio of signals (composition, branches)
 - Chemical effect on the muonic cascade

