WIMPs and beyond: from LUX-ZEPLIN to a future liquid xenon observatory

Kelsey C Oliver Mallory

Imperial College London May 22nd, 2024 Rutherford Appleton Laboratory Particle Physics Department Seminar

Dark matter & xenon: a timeline

XENON10 15 kg

ZEPLIN-I 3.2 kg

LUX 250 kg

ZEPLIN-II 31 kg

XENON1T 2T

2020

LZ 7 T*

Future

*Ongoing experiments

Distance (light years)

Mon. Not. R. Astron. Soc. 311, 441±447 (2000) By Mario De Leo - Own work, CC BY-SA 4.0

Cosmic microwave background

Dark matter properties

Dark: does not interact electromagnetically

Stable over the lifetime of the universe

Cold: moves slowly enough for galaxy formation

A particle could meet these criteria

We are in the Milky Way

Local dark matter density ~ 0.3 GeV/cm³

Average dark matter velocity v ~ 220 km/s

Assuming Maxwell-Boltzmann distribution of dark matter

By David (Deddy) Dayag - Own work, CC BY-SA 4.0

Detecting dark matter particles

Theoretical possibilities for particle dark matter

8

Weakly interacting massive particles (WIMPs)

Dark matter freeze-out $m_{DM} \sim 100 \text{ GeV}$ $\langle \sigma_A v \rangle \sim \text{weak-scale}$

Supersymmetry provides candidates

Currently viable GeV-TeV dark matter models

Dark matter scattering rate

Properties of Xe

Many isotopes including 129 Xe/ 131 Xe (26.4/21.2%) with unpaired neutrons and 136 Xe, a candidate for $0\nu\beta\beta$

Boils at cryogenic temperatures (~ -110 C)

Few problematic radio-isotopes

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Zürich
- US Europe Asia Oceania

LUX-ZEPLIN (LZ) collaboration

38 institutions, 250 scientists, engineers, and technical staff

Science and Technology Facilities Council

b Institute for Basic Science

LZ at Sanford Underground Research Facility (SURF) in Lead South Dakota

- 238 T high purity water
- Passive shielding from external radioactivity

Outer detector (OD)

- 17.3 T gadolinium loaded liquid scintillator
- 120x 8" photomultiplier tubes (PMTs)
- Veto neutrons from detector materials (88±0.7% tagging efficiency with 5% livetime reduction)

-Skin

- 2 T liquid xenon
- 93x 1" and 38x 2" PMTs
- Veto γ rays from detector materials

Liquid-gas Xe time projection chamber (TPC)

- 7 T liquid xenon
- 494 3" PMTs
- Dark matter detector

LZ TPC design

1.5 m dia x 1.5 m height

PTFE everywhere for light collection

7 T active LXe (5.5 T fiducial)

4x wire-grid electrodes

- E_{drift} = 193 V/cm ER/NR discrimination = 99.9%
- E_ext,gas = 7.3 kV/cm

Cathode HV connection

Extraction efficiency = 80.5%

Kelsey C Oliver-Mallory | k.oliver-mallory@imperial.ac.uk

Fiducialization

Liquid xenon

Xenon is dense, $\sim 3 \text{ g/cm}^3$

Short n/ γ attenuation length (~few cm for γ) compared to size of LZ TPC (1.5 m x 1.5 m)

Reject events from the high-background rate regions near the edge of the TPC

Kelsey C Oliver-Mallory | k.oliver-mallory@imperial.ac.uk

Electron/nuclear recoil discrimination

50

3.4 keV

 7.4 keV_{ee}

 $35 \ keV_{nr}$

60

70

Phys. Rev. Lett. 131, 041002

Nuclear recoil (NR) WIMP 4.50 signal & neutron backgrounds

Electron recoil (ER) γ/β backgrounds

Kelsey C Oliver-Mallory | k.oliver-mallory@imperial.ac.uk

80

LZ calibrations

Parameter	Value										
g_1^{gas}	$0.0921\mathrm{phd/photon}$				D	hve Do	v Lott 1	131 0/100	12		
g_1	$0.1136\mathrm{phd/photon}$	4.50					v. Lett.		<u>'</u>	· · · · · · ·	
Effective gas extraction field	$8.42\mathrm{kV/cm}$		-		15	9.8 kel	60 / ee	keV _{nr} .	13.4 keV _e	e	
Single electron	$58.5\mathrm{phd}$	4.25			43	keV _{nr}			and the state		
Extraction Efficiency	80.5%		-	<u> </u>						2. Sec. 1	
g_2	$47.07 \mathrm{phd/electron}$	<u> </u>	· . ·	100						NINT TO BE	Contraction
$E = W\left(\frac{S_1}{g_1}\right)$	$\left(+ \frac{S_2}{g_2} \right)$	[phd] 3.75 									
W = average energy per	quantum	3.00		9 keV	20) keV	5	5.1 keV		4 keV	-
$g_1^{} = light gain$		2.75		keV _{nr}	15	keV _{nr}		25 keV _{nr}	3	5 keV _{nr}	
$g_2^{} = charge \ gain$		(0 1	0 2	0	30 S	40 1 <i>c</i> [ph	50 d]	60	70	80

LZ calibrations

Noble Element Simulation Technique (NEST) to model response of the detector to electron/nuclear recoils https://doi.org/10.5281/zenodo.6634896

 CH_3T (Q_{β}=18.6 keV) used to tune parameters of NEST

DD neutrons (2.45 MeV) to validate NR band model

- ER/NR band mean
- - 10 & 90% contours

99.9% rejection of ERs below the median of a 40 GeV WIMP signal

LZ background model

LZ background model

Source	Expected Events
β decays + Det. ER	218 ± 36
$\nu \mathrm{ER}$	27.3 ± 1.6
¹²⁷ Xe	9.2 ± 0.8
124 Xe	5.0 ± 1.4
¹³⁶ Xe	15.2 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01
Accidentals	1.2 ± 0.3
Subtotal	276 ± 36
³⁷ Ar	[0, 291]
Detector neutrons	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	
Total	—

Predictions from:

- Material radioassays
- Calculations of cosmogenic activation
- Side bands of LZ data

LZ fit results

Source	Expected Events	Best Fit		
β decays + Det. ER	218 ± 36	222 ± 16		
$\nu \mathrm{ER}$	27.3 ± 1.6	27.3 ± 1.6		
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8		
124 Xe	5.0 ± 1.4	5.2 ± 1.4		
136 Xe	15.2 ± 2.4	15.3 ± 2.4		
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01		
Accidentals	1.2 ± 0.3	1.2 ± 0.3		
Subtotal	276 ± 36	281 ± 16		
^{37}Ar	[0, 291]	$52.1_{-8.9}^{+9.6}$		
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$		
$30 \mathrm{GeV/c^2}$ WIMP		$0.0^{+0.6}$		
Total	—	333 ± 17		

For every WIMP mass best fit result is consistent with 0

LZ fit results

World-leading WIMP sensitivity

Extended unbinned profile likelihood statistic in log₁₀S2-S1 observable space

Two-sided with 90% CL bounds

Power constrained with $\pi_{crit} = 0.16$

-- Median projected sensitivity

Limit

5.5 T fiducial volume, 60 livedays, 5.2 $\rm keV_{nr}$ threshold

Probing new parameter space even with only 6% of the final exposure

Did NOT perform bias mitigation by salting or blinding but did define our cuts on sidebands and calibration data

Many additional DM searches!

 \mathcal{L}^s_{10}

Phys. Rev. Lett. 131, 041002

New physics in low-energy ERs

Phys. Rev. D 108, 072006

WIMP-nucleon EFT couplings

Accepted to Phys. Rev. D

Kelsey C Oliver-Mallory | k.oliver-mallory@imperial.ac.uk

LZ and beyond

Memorandum of understanding towards a next-generation LXe experiment

More than 100 senior scientists from 16 countries signed MoU on 6th of July 2021

$\mathsf{XENON} + \mathsf{LUX}\text{-}\mathsf{ZEPLIN} + \mathsf{DARWIN} \to \mathsf{XLZD}$

First meeting of the XLZD consortium in June 2022

Two additional meetings, including one at RAL in 2024

Website: https://xlzd.org/

Science with liquid xenon

White paper published in <u>J. Phys. G: Nucl.</u> <u>Part. Phys. 50 013001 (2023</u>) (particular thanks to Rafael Lang, Purdue)

~600 authors from 145 institutes

72 UK authors from 13 institutes

Details the breadth of physics enabled by a next-generation xenon observatory

OPEN ACCESS

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 (115pp)

https://doi.org/10.1088/1361-6471/ac841a

Topical Review

A next-generation liquid xenon observatory for dark matter and neutrino physics

> J Aalbers^{1,2}, S S AbdusSalam³, K Abe^{4,5}, V Aerne⁶, F Agostini⁷, S Ahmed Maouloud⁸, D S Akerib^{1,2} D Y Akimov⁹, J Akshat¹⁰, A K Al Musalhi¹¹, F Alder¹², S K Alsum¹³, L Althueser¹⁴, C S Amarasinghe¹⁵. F D Amaro¹⁶, A Ames^{1,2}, T J Anderson^{1,2}, B Andrieu⁸, N Angelides¹⁷, E Angelino¹⁸, J Angevaare¹⁹, V C Antochi²⁰, D Antón Martin²¹, B Antunovic^{22,23}, E Aprile²⁴, H M Araújo¹⁷, J E Armstrong²⁵, F Arneodo²⁶, M Arthurs¹⁵, P Asadi²⁷, S Baek²⁸, X Bai²⁹, D Baipai³⁰, A Baker¹⁷, J Balaithy³¹, S Balashoy³², M Balzer³³, A Bandyopadhyay³⁴, J Bang³⁵, E Barberio³⁶, J W Bargemann³⁷, L Baudis⁶, D Bauer¹⁷, D Baur³⁸, A Baxter³⁹, A L Baxter¹⁰, M Bazvk⁴⁰, K Beattie⁴¹, J Behrens⁴², N F Bell³⁶, L Bellagamba⁷, P Beltrame⁴³, M Benabderrahmane²⁶, E P Bernard^{41,44} G F Bertone¹⁹, P Bhattacharjee⁴⁵, A Bhatti²⁵, A Biekert^{41,44}, T P Biesiadzinski^{1,2}, A R Binau¹⁰, R Biondi⁴⁶, Y Biondi⁶, H J Birch¹⁵, F Bishara⁴⁷, A Bismark⁶, C Blanco^{20,48}, G M Blockinger⁴⁹, E Bodnia³⁷, C Boehm⁵⁰, A I Bolozdynya⁹, P D Bolton¹², S Bottaro^{51,52}, C Bourgeois⁵³, B Boxer³¹, P Brás⁵⁴, A Breskin⁵⁵, P A Breur¹⁹, C A J Brew³², J Brod⁵⁶, E Brookes¹⁹, A Brown³⁸, E Brown⁵⁷, S Bruenner¹⁹, G Bruno⁴⁰, R Budnik⁵⁵, T K Bui⁵, S Burdin³⁹, S Buse⁶, J K Busenitz³⁰, D Buttazzo⁵², M Buuck^{1,2}, A Buzulutskov^{58,59}, R Cabrita⁵⁴, C Cai⁶⁰, D Cai⁴⁰, C Capelli⁶, J M R Cardoso¹⁶, M C Carmona-Benitez⁶¹ M Cascella¹², R Catena⁶², S Chakraborty⁶³, C Chan³⁵, S Chang⁶⁴, A Chauvin⁶⁵, A Chawla⁶⁶, H Chen⁴¹, V Chepel⁵⁴, N I Chott²⁹, D Cichon⁶⁷, A Cimental Chavez⁶, B Cimmino⁶⁸, M Clark¹⁰, R T Co⁶⁹, A P Coliin¹⁹, J Conrad²⁰

*Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

0954-3899/22/013001+115\$33.00 © 2022 The Author(s). Published by IOP Publishing Ltd Printed in the UK

Baseline target mass: 60 T

XLZD detector

Compact: ~4 m diameter x height

Adjustable detector: options for shorter or taller TPC

Allows us to operate initially with a smaller amount of xenon: identify and fix problems

Siting

Considering 5 underground sites

Detector size requires significant space for clean underground fabrication

FOR D	FEASIBILITY STUDY EVELOPING THE BOULBY UNDERGROUND LABORATOR INTO A FACILITY FOR FUTURE MAJOR INTERNATIONAL PROJECTS
	Supported by the STFC Opportunities Call 2019
H M Ara S M	(djo ¹ , J Dobson ² , C Ghag ² , S Greenwood ⁹ , V A Kudryavtsev ⁴ , P Majewski ² Paling ⁶ , V P&C ⁴ , R Saakyan ² , P R Scovell ⁶ , N Smith ⁶ , and T J Sumner ^{1,*} ¹ Imperial College London, UK ² University College London, UK ³ STFC Ruthertord Appleton Laboratory, UK ⁴ University of Sheffield, UK ⁸ STFC Boulty Underground Laboratory, UK ⁶ SNOLAB, CA [*] Corresponding author (t.sumner@imperial.ac.uk)
	June 25, 2021 Issue v1.0
	OFFICIAL-SENSITIVE (COMMERCIAL)

EINIAL DEDODT

2019-21 Boulby feasibility study indicated technical viability

A challenge, but a great opportunity

XLZD WIMP Backgrounds

Goal is to be dominated by astrophysical neutrino backgrounds

Self-shielding from γ -ray and neutron backgrounds

⁸⁵Kr purity levels sufficient for next generation achieved

²²²Rn is challenging but there is ongoing R&D

Chasing WIMPs to the Neutrino Fog

WIMP projected sensitivity

Background assumptions

- Coherent ⁸B, HEP, diffuse supernovae, atmospheric v-nucleus scattering
- Solar *v*-e scattering
- $2\nu\beta\beta$ of ¹³⁶Xe at natural abundance

Chasing WIMPs to the Neutrino Fog

WIMP 3*o* discovery potential

Background assumptions

- Coherent ⁸B, HEP, diffuse supernovae, atmospheric v-nucleus scattering
- Solar *v*-e scattering
- $2\nu\beta\beta$ of ¹³⁶Xe at natural abundance

Chasing ¹³⁶Xe $0\nu\beta\beta$ to Exhaustion

Background assumptions

- $2\nu\beta\beta$ impact mitigated by ~0.6 σ/E
- 0.1 μ Bq/kg ²²²Rn chain \rightarrow ²¹⁴Bi (Q_{β}=3270 keV)
- ²¹⁴Bi γ ray (2447 keV) from materials mitigated by self shielding of large detector
- ¹³⁷Xe (Q_{β} =4173 keV) from capture of cosmogenic muon induced neutrons on ¹³⁶Xe

Chasing ¹³⁶Xe 0νββ to Exhaustion

Chasing ¹³⁶Xe $0\nu\beta\beta$ to Exhaustion

Summary

- 1. LZ is operating and taking high quality physics data
 - a. All detectors are performing well
 - b. Backgrounds are within expectation

2. With 6% of final exposure, we've achieved world-leading WIMP sensitivity

3. Broad physics program still lies ahead for LZ

4. The xenon community is uniting into the XLZD Consortium to build the ultimate xenon rare event observatory

Thank you

Additional Slides

LZ data quality

Livetime vetoes: $90 \rightarrow 60$ days Waveform quality cuts 1.0 Trigger 0.8 Measured + S1 threshold + SS & data analysis cuts with CH₂T 9.0 Efficiency + ROI and DD/AmLi 1.00 -0.75 0.50 50% efficiency: 5.3 keV_{nr} 0.2 0.25 0.00 0.0 10 20 30 40 50 60 70 Recoil Energy [keV_{nr}]

Fiducial volume cut: $7 \rightarrow 5.5 \pm 0.2 \text{ T}$

- × Skin-prompt-tagged events
- OD-prompt-tagged events

Livetime

60 live days exposure after cuts collected over the beginning of 2022

The cuts form high rates of photons and electrons following larger S2 signals is dominant

Cause	Impact (%)
Hotspot cut	3.1
Muon event veto	0.2
Electron train	29.8
High S1 rates	0.2
Undetected muons	0.5
Electronics noise	<0.001
Veto cuts	5

Calibrations

- Many sources:
- ^{83m}Kr: monoenergetic ERs, 32.1 keV and 9.4 keV
- ^{131m}Xe: monoenergetic ER, 164 keV
- CH₃T (tritium): beta spectrum Q-value: 18.6 keV
- Deuterium-deuterium (DD): triggered 2.45 MeV neutrons
- Activation lines
- AmLi: continuum neutrons, isotropic
- Radon chain alpha decays
- And more (²²⁰Rn, YBe, ²⁵²Cf, ²²Na, ²²⁸Th, etc)
- Some uses:
 - Tune the position reconstruction algorithm in horizontal plane
 - Flat fielding of S1 and S2 signals
 - Energy reconstruction and detector response
 - Measure efficiencies

 Light gain g1: 0.114 ± 0.002 phd/photon

- Charge gain g2: 47.1 ± 1.1 phd/electron
- Single electron size: 58.5 phd

Doke Plot: energy calibration

$$E = W\left(\frac{S_1}{g_1} + \frac{S_2}{g_2}\right)$$
$$W = average energy per quantum$$
$$g_1 = light gain$$
$$g_2 = charge gain$$

LZ spin-dependent WIMP sensitivity

Unpaired neutrons

Sensitivity to WIMP-p interactions through higher order nuclear effects, albeit with large uncertainty

Uncertainty bands represent theoretical uncertainty on nuclear form factor

Xenon activation to ³⁷Ar

³⁷Ar decays ($T_{1/2}$ = 35 d, monoenergetic 2.8 keV ER deposition from electron capture)

Predominant source of argon in LZ is through cosmogenic spallation LZ Collaboration, Phys. Rev. D 105, 082004 (2022), <u>2201.02858</u>

Estimates of the activity show approximately 100 decays in data, with a large uncertainty

PLR constraints [0,291]

Three calibration sources cover this region \rightarrow efficiency is NOT compromised

World-leading WIMP sensitivity

Eur.

. Phys

82

Solutions for Rn removal

Rn sources inside the detector \rightarrow continuous removal

2 ongoing experiments \rightarrow 2 solutions to every problem

- LZ uses adsorption of xenon gas on cold charcoal
- XENONnT uses cryogenic distillation enhanced for radon removal

Most Rn sources are in the gaseous xenon

Cryogenic distillation in gas phase reduces by ~ 2

Cryogenic distillation by extracting LXe at a rate comparable to the Rn half live, 2 tonnes per day

XLZD would require 10 tonnes per day

Radioassay and emanation measurements to reduce the total radon load, e.g. Cold Radon Emanation Facility

Eur. Phys. J. C 82, 1104 (2022)

Kr removal

Required purity of <100 ppq

2 ongoing experiments \rightarrow 2 solutions to every problem

- LZ uses offline gas chromatography
- XENONnT demonstrated online cryogenic distillation enhanced for krypton removal

Both techniques provide efficient removal

No sources of Kr in the detector but outgassing of air from components can introduce Kr well running

The Kr level will be monitored with a RGA and if it should rise above a certain level we can use online removal

Discovery limit at neutrino fog

CNS of ⁸B solar and atmospheric neutrinos is indistinguishable from a WIMP signal

⁸B solar neutrino flux has ~2% uncertainty

Atmospheric neutrino flux ~20% uncertainty

Discovery limit scale as: background free \rightarrow Poissonian \rightarrow limited by uncertainty in flux

Any reduction in uncertainty from other experiments will improve our ability to dig deeper in the WIMP parameter space

- SNO+
- JUNO
- DUNE

Figure 14. Spin-independent discovery limits at $m_{\chi} = 100$ GeV as a function of the expected number of atmospheric CE ν NS events *N*, and the fractional uncertainty on the atmospheric neutrino flux, $\delta \Phi_{Atm}/\Phi_{Atm}$. Reprinted (figure) with permission from [474], Copyright (2020) by the American Physical Society. Three scaling regimes as a function of *N* are shown with dashed lines: (1) 'background-free' $\sigma \sim N^{-1}$, (2) Poissonian $\sigma \sim N^{-1/2}$, and (3) saturation $\sigma \sim \sqrt{(1 + \delta \Phi^2 N)/N}$. The bottom panels in each case show the logarithmic scaling exponent defined as: $n_{\text{DL}} \equiv \text{dln } \sigma_{\text{DL}}/\text{dln } N$. This figure shows the importance of the neutrino flux systematic uncertainty in extending the dark matter physics reach below the neutrino fog.