# Quantum Computing for Particle Physics 

Simon Williams

Rutherford Appleton Laboratory,
7th February 2024


# Nurham University 

- Quantum Computing - The Power of the Qubit
- The Quantum Walk
- Why are we interested in High Energy Physics?
- Event generation in high energy collisions
- Quantum Parton Showers
- Track Finding via Quantum Template Matching

IBMQ
Nurham University

## Quantum Computing

The Power of the Qubit

## Quantum Computing - The Power of the Qubit!



## Types of Quantum Device:

"Nature is quantum [...] so if you want to simulate it, you need a quantum computer"

- Richard Feynman (1982)

Quantum Computing has had a lot of successes since - most recently with Shor and Deutsch winning the Breakthrough Prize and the $\mathbf{2 0 2 2}$ Nobel Quantum Annealing


Superconductor Quantum Computing

Photonic Devices

1


Prize going to Quantum Information

## Types of Quantum Computing Devices



## Quantum Annealing

$$
H(\sigma)=-\sum_{i, j} J_{i j} \sigma_{i} \sigma_{j}-\mu \sum_{j} h_{j} \sigma_{j}
$$

## Photonic Quantum Devices

Type of gate quantum computing, manipulating photon states

## Advantages:

- Well suited to optimisation problems


## Disadvantages:

- Uncontrollable, noisy devices
- Not universal devices


## Advantages:

- Continuous variable devices
- Only weak interactions with environment


## Disadvantages:

- All states must be Gaussian


## Types of Quantum Computing Devices



## Advantages:

- Highly controllable qubits
- Universal computation


## Disadvantages:

- Small number of qubits, not very fault tolerant


## Single qubit gates:

$$
U_{3}-U_{3}|0\rangle \rightarrow \cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle
$$

Multi-qubit gates:


CNOT $|00\rangle \rightarrow|00\rangle$, CNOT $|10\rangle \rightarrow|11\rangle$,
CNOT $|01\rangle \rightarrow|01\rangle$, CNOT $|11\rangle \rightarrow|10\rangle$

## Noisy Intermediate-Scale Quantum Devices

## NISQ devices:

No continuous quantum error correction, prone to large noise effects from environment.

IBMQ


## Transpilation:

Loading the circuit onto the backend, transpilation can be used to optimise the circuit: qubit and coupling mapping, noise models, etc.

Quantum errors:

Mutliqubit qubit gates: CNOT gates have higher associated errors than single qubit gates.

SWAP errors: SWAP operations require 3 CNOT gates

TI times: The time it takes for an excited qubit to decay back to the ground state.

Circuit depth! - Compact circuits needed!

## The Quantum Walk

## The Quantum Walk




## The Quantum Walk




## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Coin
Operation:

$$
C|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$



## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Unitary
Transformation:

$$
U=S \cdot(C \otimes I)
$$

Coin
Operation:

$$
C|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$



## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Unitary
Transformation:

$$
U=S \cdot(C \otimes I)
$$

Coin
Operation:
$C|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$


## The Quantum Walk



Circuit depth of a quantum walk grows linearly with the number of steps

Suitable quantum circuit architecture for
NISQ era devices


## Speed up via Quantum Walks

Quantum Walks have long be conjectured to achieved at least quadratic speed up

Szegedy Quantum Walks have been proven to achieve quadratic speed up for Markov Chain Monte Carlo

This has been proven under the condition that the MCMC algorithm is reversible and ergodic

Work is ongoing to prove this is true for all QWs, but latest upper limits are on par with classical RW

## Quantum Walks with Memory



## Advantages:

- Arbitrary dynamics
- Classical dynamics in unitary evolution


## Disadvantages:

- Tight conditions on quantum advantage


## Qubit model:

Augment system further by adding an additional memory space

$$
\mathscr{H}=\mathscr{H}_{P} \otimes \mathscr{H}_{C} \otimes \mathscr{H}_{M}
$$

## Quantum Parton Showers:

Quantum Walks with memory have proven to be very useful for quantum parton showers.
K. Bepari, S. Malik, M. Spannowsky and SW, Phys. Rev.

D 106 (2022) 5, 056002

IBM Q
置 Durham
University

Why are we interested in High Energy Physics?

## Event Generation - What's the problem?

Typical hadron-hadron collisions are highly complex resulting in $\mathrm{O}(\mathrm{I} 000)$ particles

The theoretical description of collision events is highly complex

## Monte Carlo Event

Generators have been the most
successful approach to simulating particle collisions

MC Event Generators exploit
factorisation theorems in QCD


OHard Interaction

- Resonance Decays
$\square$ MECs, Matching \& Merging
- FSR


## ISR*

 - QEDWeak Showers
Hard Onium
OMultiparton Interactions
$\square$ Beam Remnants*
$\mathbb{Q}$ Strings
© Ministrings / Clusters
Colour Reconnections
String Interactions
Bose-Einstein \& Fermi-Dirac
Primary Hadrons
Secondary Hadrons

- Hadronic Reinteractions
(*: incoming lines are crossed)


## Event Generation - What's the problem?

## Event Generation - What's the problem?

Parton Density Functions


Phys. Rev.D 103, 034027

## Event Generation - What's the problem?

Parton Density Functions


## Event Generation - What's the problem?

Parton Density Functions



## Event Generation - What's the problem?

Parton Density Functions


Hard Process


Phys. Rev.D 103, 034027

Parton Shower


HEP || (2022) 035

Hadronisation


## Event Generation - What's the problem?

Hard Process


Phys. Rev. D 103, 076020

Phys. Rev.D 106, 056002
Phys. Rev. Lett. 126, 062001

Parton Shower


## The Parton Shower



## Collinear mode:



Successive decay steps factorise into independent quasi-classical steps

## Soft mode:

Interference effects only allow for partial factorisation

Leading contributions to the decay rate in the collinear limit are included in the soft limit

In this limit, the decay from high energy to low energy proceeds as a colour-dipole cascade.

This interpretation allows for straightforward interference patterns and momentum conservation

## The Parton Shower - The Veto Algorithm

The choice of the variables $\xi$ and $t$ is known as the phase space parameterisation

## Non-Emission Probability

$$
\Delta\left(t_{n}, t\right)=\exp \left(-\int_{t}^{t_{n}} d t d \xi \frac{d \phi}{2 \pi} C \frac{\alpha_{s}}{2 \pi} \frac{2 s_{i k}(t, \xi)}{s_{i j}(t, \xi) s_{j k}(t, \xi)}\right)
$$

$$
\mathcal{F}_{n}\left(\Phi_{n}, t_{n}, t_{c} ; O\right)=\Delta\left(t_{n}, t_{c}\right) O\left(\Phi_{n}\right)
$$

## Master Equation

$$
+\int_{t_{c}}^{t_{n}} d t d \xi \frac{d \phi}{2 \pi} C \frac{\alpha_{s}}{2 \pi} \frac{2 s_{i k}(t, \xi)}{s_{i j}(t, \xi) s_{j k}(t, \xi)} \Delta\left(t_{n}, t\right) \mathcal{F}_{n}\left(\Phi_{n+1}, t, t_{c} ; O\right)
$$

## Inclusive Decay Probability

$d \mathcal{P}\left(q\left(p_{\mathrm{I}}\right) \bar{q}\left(p_{\mathrm{K}}\right) \rightarrow q\left(p_{i}\right) g\left(p_{j}\right) \bar{q}\left(p_{k}\right)\right) \simeq \frac{d s_{i j}}{s_{\mathrm{IK}}} \frac{d s_{j k}}{s_{\mathrm{IK}}} C \frac{\alpha_{s}}{2 \pi} \frac{2 s_{\mathrm{IK}}}{s_{i j} s_{j k}}$

Current interpretations of the veto algorithm treat the phase space variables $\xi$ and $t$ as continuous

## Quantum Parton Shower



LUND
UNIVERSITY

## Discrete QCD - Abstracting the Parton Shower Method

I. Parameterise phase space in terms of gluon transverse momentum and rapidity:

$$
k_{\perp}^{2}=\frac{s_{i j} s_{j k}}{s_{\mathrm{IK}}} \quad \text { and } \quad y=\frac{1}{2} \ln \left(\frac{s_{i j}}{s_{j k}}\right)
$$

which leads to the inclusive probability:

$$
d \mathcal{P}\left(q\left(p_{\mathrm{I}}\right) \bar{q}\left(p_{\mathrm{K}}\right) \rightarrow q\left(p_{i}\right) g\left(p_{j}\right) \bar{q}\left(p_{k}\right)\right) \simeq=\frac{C \alpha_{s}}{\pi} d \kappa d y
$$

where $\kappa=\ln \left(\frac{k_{1}^{2}}{\Lambda^{2}}\right)$ and $\Lambda$ is an arbitrary mass scale
Due to the colour charge of emitted gluons, the rapidity span for subsequent dipole decays is increased. This is interpreted as "folding out"



## Discrete QCD - Abstracting the Parton Shower Method

2. Neglect $g \rightarrow q \bar{q}$ splittings and examine transverse-momentum-dependent running coupling

$$
\alpha_{s}\left(k_{\perp}^{2}\right)=\frac{12 \pi}{33-2 n_{f}} \frac{1}{\ln \left(k_{\perp}^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}
$$

leads to the inclusive probability

$$
d \mathcal{P}\left(q\left(p_{\mathrm{r}}\right) \bar{q}\left(p_{\mathrm{K}}\right) \rightarrow q\left(p_{i}\right) g\left(p_{j}\right) \bar{q}\left(p_{k}\right)\right) \simeq=\frac{d \kappa}{\kappa} \frac{d y}{\delta y_{g}} \quad \text { with } \quad \delta y_{g}=\frac{11}{6}
$$

Interpreting the running coupling renormalisation group as a gainloss equation:

$$
\begin{aligned}
& \text { Gluons within } \delta y_{g} \text { act coherently } \\
& \text { as one effective gluon }
\end{aligned}
$$



## Discrete QCD - Abstracting the Parton Shower Method

2. Neglect $g \rightarrow q \bar{q}$ splittings and examine transverse-momentum-dependent running coupling

$$
\alpha_{s}\left(k_{\perp}^{2}\right)=\frac{12 \pi}{33-2 n_{f}} \frac{1}{\ln \left(k_{\perp}^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}=\frac{\text { const. }}{\kappa}
$$

leads to the inclusive probability

$$
d \mathcal{P}\left(q\left(p_{1}\right) \bar{q}\left(p_{K}\right) \rightarrow q\left(p_{i}\right) g\left(p_{j}\right) \bar{q}\left(p_{k}\right)\right) \simeq=\frac{d \kappa}{\kappa} \frac{d y}{\delta y_{g}} \quad \text { with } \quad \delta y_{g}=\frac{11}{6}
$$

Interpreting the running coupling renormalisation group as a gainloss equation:

$$
\begin{aligned}
& \text { Gluons within } \delta y_{g} \text { act coherently } \\
& \text { as one effective gluon }
\end{aligned}
$$



## Discrete QCD - Abstracting the Parton Shower Method

Folding out extends the baseline of the triangle to positive $y$ by $\frac{l}{2}$, where $l$ is the height at which to emit effective gluons


A consequence of folding is that the $\kappa$ axis is quantised into multiples of $2 \delta y_{g}$

Each rapidity slice can be treated independently of any other slice. The exclusive rate probability takes the simple form:

$$
\frac{d \kappa}{\kappa} \exp \left(-\int_{\kappa}^{\kappa_{\max }} \frac{d \bar{\kappa}}{\bar{\kappa}}\right)=\frac{d \kappa}{\kappa_{\max }}
$$

## Discrete QCD as a Quantum Walk



The Discrete-QCD dipole cascade can therefore be implemented as a simple

## Quantum Walk



Repeat for all slices in fold

Discrete QCD - Grove Structures

(G)

(M)

(B)

(H)

(C)




## Generating Scattering Events from Groves

Once the grove structure has been selected, event data can be synthesised in the following steps using the baseline:
I. Create the highest $\kappa$ effective gluons first (i.e. go from top to bottom in phase space)
2. For each effective gluon $j$ that has been emitted from a dipole $I K$, read off the values $s_{i j}, s_{j k}$ and $s_{I K}$ from the grove
3. Generate a uniformly distributed azimuthal decay angle $\phi$, and then employ momentum mapping (here we have used Phys. Rev.D 85,014013 (2012), 1108.6172 ) to produce post-branching momenta

The algorithm has been run on both the ibm_qasm_simulator and the ibm_algiers 27 qubit device.
A like-for-like classical implementation has been used as a comparison.

## Discrete QCD as a Quantum Walk - Raw Grove Simulation



The algorithm has been run on the IBM Falcon 5.I Ir chip

The figure shows the uncorrected performance of the ibm_algiers device compared to a simulator

The 24 grove structures are generated for a $E_{C M}=91.2 \mathrm{GeV}$, corresponding to typical collisions at LEP.

Main source of error from CNOT errors from large amount of SWAPs

## Collider Events on a Quantum Computer




University

## Quantum Charged Track Finding

## Track Finding via Associative Memory



# A critical stage of event reconstruction and classification in modern colliders is the identification of charged particle trajectories 

Highly granular detectors are used to efficiently measure the position of charged particles as they move through the detector

Classical techniques like Associative Memory have been shown to be highly effective, but new approaches are required as collider energy and luminosity increase to handle the growing number of tracks and combinatorics

## Quantum Amplitude Amplification

The aim is to identify interesting states in a database

$X=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ with interesting states $m_{i}$ encoded on a quantum device as $|s\rangle=\mathscr{A}|0\rangle^{\otimes n}$

Marking interesting states, $|m\rangle$ using the oracle
$f(x)=\left\{\begin{array}{ll}1 & \text { if } x=m, \\ 0 & \text { otherwise } .\end{array} \longrightarrow \quad S_{f}|x\rangle=(-1)^{f(x)}|x\rangle\right.$
Amplify marked states using the diffusion operation:

$$
D=\mathscr{A}^{\dagger} S_{0} \mathscr{A}
$$

Therefore, can iteratively apply the Grover Iterator:

$$
\mathscr{Q}=\mathscr{A}^{\dagger} S_{0} \mathscr{A} S_{f}
$$

## Quantum Amplitude Amplification

The aim is to identify interesting states in a database
$X=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ with interesting states $m_{i}$ encoded on a quantum device as $|s\rangle=\mathscr{A}|0\rangle^{\otimes n}$

Marking interesting states, $|m\rangle$ using the oracle
$f(x)=\left\{\begin{array}{ll}1 & \text { if } x=m, \\ 0 & \text { otherwise } .\end{array} \longrightarrow \quad S_{f}|x\rangle=(-1)^{f(x)}|x\rangle\right.$
Amplify marked states using the diffusion operation:

$$
D=\mathscr{A}^{\dagger} S_{0} \mathscr{A}
$$

$\left|s^{\prime}\right\rangle=\frac{1}{\sqrt{N-1}} \sum_{n-1}|n-1\rangle$

Therefore, can iteratively apply the Grover Iterator:

$$
\mathscr{Q}=\mathscr{A}^{\dagger} S_{0} \mathscr{A} S_{f}
$$

## Quantum Amplitude Amplification

The aim is to identify interesting states in a database

$$
\left.\stackrel{|w\rangle}{|s\rangle} \quad\left|\begin{array}{l}
1 \\
\sqrt{N} \\
\sum_{n}
\end{array}\right| n\right\rangle
$$

$$
X=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\} \text { with interesting states } m_{i} \text { encoded }
$$ on a quantum device as $|s\rangle=\mathscr{A}|0\rangle^{\otimes n}$

Marking interesting states, $|m\rangle$ using the oracle

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x=m, \\
0 & \text { otherwise } .
\end{array} \quad \rightarrow \quad S_{f}|x\rangle=(-1)^{f(x)}|x\rangle\right.
$$

Amplify marked states using the diffusion operation:

$$
D=\mathscr{A}^{\dagger} S_{0} \mathscr{A}
$$

Therefore, can iteratively apply the Grover Iterator:

$$
\mathscr{Q}=\mathscr{A}^{\dagger} S_{0} \mathscr{A} S_{f}
$$

## Quantum Amplitude Amplification

The aim is to identify interesting states in a database
 on a quantum device as $|s\rangle=\mathscr{A}|0\rangle^{\otimes n}$

Marking interesting states, $|m\rangle$ using the oracle
$f(x)=\left\{\begin{array}{ll}1 & \text { if } x=m, \\ 0 & \text { otherwise } .\end{array} \longrightarrow \quad S_{f}|x\rangle=(-1)^{f(x)}|x\rangle\right.$
Amplify marked states using the diffusion operation:

$$
D=\mathscr{A}^{\dagger} S_{0} \mathscr{A}
$$

Therefore, can iteratively apply the Grover Iterator:

$$
\mathscr{Q}=\mathscr{A}^{\dagger} S_{0} \mathscr{A} S_{f}
$$

## Quantum Amplitude Amplification

The aim is to identify interesting states in a database
$|w\rangle$

$X=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ with interesting states $m_{i}$ encoded on a quantum device as $|s\rangle=\mathscr{A}|0\rangle^{\otimes n}$

Marking interesting states, $|m\rangle$ using the oracle
$f(x)=\left\{\begin{array}{ll}1 & \text { if } x=m, \\ 0 & \text { otherwise } .\end{array} \longrightarrow \quad S_{f}|x\rangle=(-1)^{f(x)}|x\rangle\right.$
Amplify marked states using the diffusion operation:

$$
D=\mathscr{A}^{\dagger} S_{0} \mathscr{A}
$$

Therefore, can iteratively apply the Grover Iterator:

$$
\mathscr{Q}=\mathscr{A}^{\dagger} S_{0} \mathscr{A} S_{f}
$$

## Quantum Amplitude Amplification

The optimal number of iterations of the QAA routine $\mathbb{Q}$ is given by

$$
t=\left\lfloor\frac{\pi}{4} \sqrt{\frac{N}{m}}\right\rfloor
$$

After $t$ iterations of $\mathbb{Q}$, measurement will return a marked state with high probability

QAA therefore scales as $\mathcal{O}(\sqrt{N})$, thus achieving a polynomial speedup over classical search algorithms, which scale as $\mathcal{O}(N)$


## Oracle Construction

Consider a two qubit example where $|11\rangle$ is the marked state


$$
S_{f}: I \otimes|0\rangle\langle 0|+Z \otimes|1\rangle\langle 1|
$$

## Quantum Template Matching

The perform template matching, we must abstract the QAA routine by constructing a new oracle

Introducing a new data register and acting the oracle across two registers allows for data to be parsed directly to the algorithm

The oracle is constructed from a series of CNOT gates and a phase inversion about the zero state on the template register


The diffusion operation then has the same form as the regular QAA routine

$$
\mathscr{Q}=\mathscr{A}^{\dagger} S_{0} \cdot \mathscr{A} S_{f}^{\prime}
$$

## Quantum Template Matching forTrack Finding




## Quantum Track Finding with Missing Hits

A primary challenge for track finding algorithms is when a particle traverses a detector without registering a hit in one or more detector module

An Associative Memory approach to track finding cannot manage missing hit data

Modifying the oracle allows for the quantum template algorithm to efficiently search on missing hit data, without an increase in resources and retaining the high accuracy and speedup


## Quantum Track Finding with Missing Hits




IBMQ
图 Durham University

## What next for Quantum Computing in Particle Physics?

## The Future of Quantum Computing

## More qubits?



A lot of emphasis on more qubits, but without fault tolerance, large qubit devices become impractical

## Better technology?

New technology could be the answer - will new qubit hardwares be more fault tolerant?

## Be better architects?

Realistic algorithms are already being created for NISQ devices. Efficient architectures allow for practical algorithms on NISQ devices.

## IBM Roadmap

On track to deliver 1000 qubits in 2023


## IBMQ



## Summary

High Energy Physics is on the edge of a computational frontier, the High Luminosity Large Hadron Collider and FCC will provide unprecedented amounts of data

Quantum Computing offers an impressive and powerful tool to combat computational bottlenecks, both for theoretical and experimental purposes

The first realistic simulation of a high energy collision has been presented using a compact quantum walk implementation, allowing for the algorithm to be run on a NISQ device

We present an efficient approach to track finding using quantum computers by exploiting the QAA routine and employing a novel oracle paving the way for practical quantum track finding <br> \section*{Nurham <br> \section*{Nurham <br> University}


## Backup Slides

Simon Williams

Rutherford Appleton Laboratory,
7th February 2024

## Classical Random Walk

## Classical Random Walk



## Classical Random Walk




## The Quantum Walk




## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$



## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Unitary
Transformation:

$$
U=S \cdot(C \otimes I)
$$

## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Unitary
Transformation:

$$
U=S \cdot(C \otimes I) \quad H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Coin Operation:


## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Unitary
Transformation:

$$
U=S \cdot(C \otimes I)
$$

Coin Operation:

$$
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$



## The Quantum Walk



$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

Unitary
Transformation:

$$
U=S \cdot(C \otimes I) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Hadamard Coin:


## The Quantum Walk - Coin initialisation



## The Quantum Walk - Coin initialisation

Initialising the coin in the $-|1\rangle$ state

$$
H(-|1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$



## The Quantum Walk - Coin initialisation

Initialising the coin in the $-|1\rangle$ state

$$
H(-|1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$



## The Quantum Walk - Coin initialisation

Initialising the coin in the $-|1\rangle$ state

$$
H(-|1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

Removing the asymmetry:

$$
|c\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
$$



## The Quantum Walk - Coin initialisation

Initialising the coin in the $-|1\rangle$ state

$$
H(-|1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

Removing the asymmetry:

$$
|c\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
$$

Left moving part $(|c\rangle=|0\rangle)$ propagates in real amplitudes. Right moving part $(|c\rangle=|1\rangle)$ propagates in imaginary amplitudes.


## The Quantum Walk - Coin initialisation

Initialising the coin in the $-|1\rangle$ state

$$
H(-|1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

Removing the asymmetry:

$$
|c\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
$$

Left moving part $(|c\rangle=|0\rangle)$ propagates in real amplitudes. Right moving part $(|c\rangle=|1\rangle)$ propagates in imaginary amplitudes.


Running on a NISQ Quantum Device - Streamlined Circuit


Repeat for all slices in fold


## 10 qubits

21 gate operations
( 12 multi-qubit, 9 single qubit)

## Collider Events on a Quantum Computer




## Collider Events on a Quantum Computer - Varying $\Lambda$




Varying values for the mass scale $\Lambda$. This leads to non-negligible uncertainties, however this is expected from a leading logarithm model.

## Collider Events on a Quantum Computer - Varying $\Lambda$ <br> $u d s$ events scaled momentum



Varying values for the mass scale $\Lambda$. This leads to non-negligible uncertainties, however this is expected from a leading logarithm model.

## Collider Events on a Quantum Computer



Differential 2-jet rate with Durham algorithm (91.2 GeV)


## Collider Events on a Quantum Computer - Changing tune



## Collider Events on a Quantum Computer



