Machine Learning at the Edge: Nanosecond inference at the Large Hadron Collider

Thea Klæboe Årrestad (ETH Zürich)

GPT-4

(All the neurons in your brain?)

OR MoE:

NVIDIA Press Release 2020

- Train (GPT-3): 285,000 CPU cores
- 10,000 GPUs
- 400 Gb/s network
- Several weeks
- Trained on ~300B tokens

NVIDIA Press Release 2020

<u> Train (GPT-3):</u>

- 285,000 CPU cores
- 10,000 GPUs
- 400 Gb/s network
- Several weeks
- Trained on ~300B tokens

You

Who's this "Appleton" guy anyways?

ChatGPT

"Appleton" could refer to a variety of individuals or entities, depending on the context. It's a common surname, and it might also refer to locations or institutions. Here are a few possibilities:

- 1. **Individuals with the Surname Appleton**: There have been many notable people with the last name Appleton, including artists, scientists, and other professionals. Without more context, it's hard to identify a specific individual.
- 2. **Appleton, Wisconsin**: A city in the United States known for its role in the paper industry and its proximity to the Fox River.
- 3. Appleton Estate: A famous Jamaican rum producer.
- 4. **Appleton Company or Brand**: It could refer to a company or brand named Appleton, involved in various industries.
- 5. **Historical Figures**: There have been historical figures with the surname Appleton who played significant roles in various fields.

If you can provide more specific information or context about which "Appleton" you're referring to, I could give a more detailed and accurate response.

067

🚯 You

He might have been a friend of Rutherford

ChatGPT

U

If the "Appleton" you're referring to was a friend or contemporary of Ernest Rutherford, a prominent New Zealand-born physicist known for his pioneering work in nuclear physics, it's likely you're talking about Sir E \checkmark 'd Victor Appleton. Here are some key points about him:

Message ChatGPT...

Inference (GPT-3): • ?

FP16 vs FP32

GPT-3

175,000,000,000

Range 10 ⁻³⁸ - 10 ³⁸	Accuracy 0.000006%	~700 GB of memory \rightarrow (175B par × 4 bytes/par) \rightarrow O(10 ¹) larger than max memory in single GPU
5x10 ⁻⁵ - 6x10 ⁴	0.05%	\rightarrow ~350 GB (175B param × 2 bytes/pa \rightarrow 11 NVIDIA V100 (\$10 0

AI & Memory Wall

AI and Memory Wall

AI & Memory Wall

AI and Memory Wall

CV: 10–100M trainable parameters, 10¹⁸ –10¹⁹ FLOPs for training LLM: 100M to 100Bs trainable parameters, 10²⁰–10²³ FLOPs for training

Kaplan et al. (2020)

Resources: 11 interconnected GPUs Latency: 10¹ seconds

<u>Resources:</u> 11 interconnected GPUs <u>Latency:</u> 10¹ seconds

You Who's this "Appleton" guy anyways?

Resources:One single chipLatency:10-9 seconds

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 151076/1405388

EFFICIENT A

Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better, G Menghani tinyML

the Rubin Observatory Legacy Survey of Space and Time

10 million alerts (~20 TB) per night at ~500Hz inference rate 60 second latency Francois Lanusse

https://arxiv.org/abs/2102.04555

Cherenkov Telescope Array (CTA) CTA trigger: 72 Tb/s - 33 µs - FPGA based

ATLAS ALICE

2,500 bunches 10¹¹ protons 11,000 times/s

Sin protons
 Sin 25 ns
 Sin 25 ns
 Sin 25 ns
 Sin 25 ns
 Sin 25 ns

Saving all collisions not useful (even if we could)!

Geneva Lake

CMS

Software rate reduction (GPU+CPU)

LHC

LHCb

2 step rate reduction (hardware+software)

Geneva ATLAS ALICE

2 step rate reduction (hardware+software)

Continous read-out (CPU+GPU)

High Level Trigger: 25'600 CPUs / 400 GPUs Latency: 3-400 ms

Reject further 99%!

L1 accept: O(100) kHz ~Tb/s

High Level Trigger: Latency 0(100) ms

CMS

LHO

Geneva

L1 accept: 0(100) kHz ~Tb/s

• Fast (get more data through) Accurate (select the right data)

Geneva

To make sure we select "the right" 0.0025%, algorithms must be

New Physics is produced less than 1 in a trillion (if at all)

Need <u>more</u> data!

High Luminosity LHC

New Physics is produced 1 in a trillion

• Need <u>more collisions</u> to observe rare processes

High Luminosity LHC

- ×10 data size
- ×3 collisions/s

x/m

2026 - 2028

2029 - 2038

HL-LHC

MAJOR UPGRADE

-Run 4+5*-*

ructure \rightarrow pile-up of ~ 60 events/x-ing ts/x-ing)

High Luminosity LHC

200 vertices (average 140)

Maintain physics acceptance \rightarrow better detectors

CMS High Granularity (endcap) calorimeter

• 85K (today) \rightarrow 6M (HL-LHC) readout channels

More collisions More readout channels

CMS HGCAL TDR

Computing resources

CMSOfflineComputingResults

... flat computing budget

Todays algorithms will not be sustainable in HL-LHC!

- faster better and do more
- More complex architectures to deal with increased data complexity!

Need modern Machine Learning to become

GPU inference

Ge

HLT trigger: Latency O(100) ms

Fast inference on specialised hardware

ASIC inference

Detector: 40 MHz ~Pb/s

FPGA inference

LHCb

Level-1 trigger: Latency O(1) µs

ATLAS

Geneva

VIRTEX"5 VIRTEX"5 XC5VLX30" FF60F60005 D0163698A

ALICE

UXC55

Why FPGAs?

Full GPU reconstruction @ 4 TB/s

• 326 GPUs, 60 kHz per GPU

Why FPGAs?

Depends on your problem...

Full GPU reconstruction @ 4 TB/s

• 326 GPUs, 60 kHz per GPU

→ LHCb has already read out detector

→ CMS frontend buffers strictly limited, cannot tolerate latency slack

→ CMS raw event data x10 larger, L1 "event" ~ 200 kB (possible with GPU)

Latency, latency, latency (cannot do much on a GPU IN 4 μ s)

- Can work on different parts of problem, different data simultaneously
- Latency <u>strictly limited by detector frontend buffer</u>

Latency deterministic

• CPU/GPU processing randomness, FPGAs repeatable and predictable latency

High bandwidth

• L1T processes 5% of total internet traffic, dissipate heat of ~7W/cm²

Programming an FPGA

Programming an FPGA


```
library ieee;
use ieee.std logic 1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std logic arith.all;
use work.gtl_pkg.all;
entity invariant mass is
    generic (
        upper limit: real := 15.0;
        lower limit: real := 10.0;
        pt1_width: positive := 12;
        pt2_width: positive := 12;
        cosh_cos_width: positive := 28;
        INV MASS PRECISION : positive := 1;
        INV MASS COSH COS PRECISION : positive := 3
   );
    port(
        pt1 : in std_logic_vector(pt1_width-1 downto 0);
        pt2 : in std_logic_vector(pt2_width-1 downto 0);
        cosh_deta : in std_logic_vector(cosh_cos_width-1 downto 0); -- cosh of etal - eta2
        cos_dphi : in std_logic_vector(cosh_cos_width-1 downto 0); -- cos of phi1 - phi2
        inv mass comp : out std logic;
        sim_inv_mass_sq_div2 : out std_logic_vector(pt1_width+pt2_width+cosh_cos_width-1 downto 0)
   ):
```

end invariant mass;

architecture rtl of invariant mass is

constant INV MASS VECTOR WIDTH : positive := pt1 width+pt2 width+cosh cos width; constant INV MASS PRECISION FACTOR : real := real(10**INV MASS PRECISION);.pkg.

signal inv_mass_sq_div2 : std_logic_vector(INV_MASS_VECTOR_WIDTH-1 downto 0); signal upper limit vector : std logic vector(INV MASS VECTOR WIDTH-1 downto 0); signal lower_limit_vector : std_logic_vector(INV_MASS_VECTOR_WIDTH-1 downto 0);

begin

-- Converting the boundary value for the comparison upper limit vector <= conv std logic vector((integer(upper limit*INV MASS PRECISION FACTOR)), INV MASS VECTOR WIDTH-FACTOR 4 VECTOR'length)*FACTOR 4 VECTOR; lower_limit_vector <= conv_std_logic_vector((integer(lower_limit*INV_MASS_PRECISION_FACTOR)), INV_MASS_VECTOR_WIDTH-FACTOR_4_VECTOR'length)*FACTOR_4_VECTOR;

```
-- Calculation of invariant mass with the formula: M**2/2 = pt1*pt2 * (cosh(etal - eta2) - cos(phi1 - phi2))
inv mass sq div2 <= pt1 * pt2 * (cosh deta - cos dphi);</pre>
sim_inv_mass_sq_div2 <= inv_mass_sq_div2;</pre>
```

-- Comparison with boundary values inv mass comp <= '1' when (inv mass sq_div2 >= lower_limit_vector and inv mass sq_div2 <= upper_limit_vector) else '0';

end architecture rtl;

```
constant FACTOR 4 VECTOR : std_logic_vector((INV_MASS_COSH_COS_PRECISION+1)*4-1 downto 0) := conv_std_logic_vector(10**(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COSH_COS_PRECISION+1),(INV_MASS_COS_PRECISION+1),(INV_MASS_COS_PRECISION+1),(INV_MASS_COS_PRECISION+1),(INV_MASS_COS_PRECISION+1),(INV_MASS_COS_PRECISION+1),
```

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std logic unsigned.all;
use ieee.std logic arith.all;
use work.gtl_pkg.all;
entity invariant mass is
    generic (
        upper limit: real := 15.0;
        lower limit: real := 10.0;
        pt1 width: positive := 12;
       pt2 width: positive := 12;
        cosh_cos_width: positive := 28;
        INV MASS PRECISION : positive := 1;
        INV MASS COSH COS PRECISION : positive := 3
   );
   port(
        pt1 : in std_logic_vector(pt1_width-1 downto 0);
       pt2 : in std_logic_vector(pt2_width-1 downto 0);
        cosh_deta : in std_logic_vector(cosh_cos_width-1 downto 0); -- cosh of etal - eta2
        cos_dphi : in std_logic_vector(cosh_cos_width-1 downto 0); -- cos of phil - phi2
        inv mass comp : out std logic;
        sim inv mass sq div2 : out std logic vector(pt1 width+pt2 width+cosh cos width-1 downto 0)
   ):
```

end invariant mass;

architecture rtl of invariant mass is

constant INV MASS_VECTOR_WIDTH : positive := pt1 width+pt2 width+cosh_cos width; constant INV MASS PRECISION FACTOR : real := real(10**INV MASS PRECISION);.pkg. constant FACTOR 4 VECTOR : std_logic_vector((INV_MASS_COSH_COS_PRECISION+1)*4-1 downto 0) := conv_std_logic_vector(10**(INV_MASS_COSH_COS_PRECISION+1),(INV_MA signal inv_mass_sq_div2 : std_logic_vector(INV_MASS_VECTOR_WIDTH-1 downto 0); signal upper limit vector : std logic vector(INV MASS VECTOR WIDTH-1 downto 0);

signal lower limit vector : std logic vector(INV MASS VECTOR WIDTH-1 downto 0);

begin

-- Converting the boundary value for the comparison upper limit vector <= conv std logic vector((integer(upper limit*INV MASS PRECISION FACTOR)), INV MASS VECTOR WIDTH-FACTOR 4 VECTOR'length)*FACTOR 4 VECTOR; lower_limit_vector <= conv_std_logic_vector((integer(lower_limit*INV_MASS_PRECISION_FACTOR)), INV_MASS_VECTOR_WIDTH-FACTOR_4_VECTOR'length)*FACTOR_4_VECTOR;

```
-- Calculation of invariant mass with the formula: M**2/2 = pt1*pt2 * (cosh(etal - eta2) - cos(phil - phi2))
inv mass sq div2 <= pt1 * pt2 * (cosh deta - cos dphi);</pre>
sim_inv_mass_sq_div2 <= inv_mass_sq_div2;</pre>
```

-- Comparison with boundary values inv mass comp <= '1' when (inv mass sq div2 >= lower limit vector and inv mass sq div2 <= upper limit vector) else '0';

end architecture rtl;

$\mathbf{x}_n = g_n(\mathbf{W}_{n,n-1}\mathbf{x}_{n-1} + \mathbf{b}_n)$ Generic (superfast) HLS implementations for DNN inference?

KERAS / PyTorch / ONNX

pip install hls4ml pip install conifer https://github.com/fastmachinelearning/hls4ml https://fastmachinelearning.org/hls4ml/

Model (quantized/pruned)

Quantized:

Model (quantized/pruned)

Convert model to internal representation

Write HLS project targeting specified backend

Quantized:

Run emulation

Run synthesis

Vivado/Vitis best supported Intel Quartus Intel One API Mentor Catapult HLS available soon

Model (quantized/pruned)

Convert model to internal representation

Write HLS project targeting specified backend

Quantized:

Run emulation

Run synthesis

Mentor

(Xilinx accelerators/SoCs)

FPGA custom designs

ASICs

Vivado/Vitis best supported Intel Quartus Intel One API Mentor Catapult HLS available soon

A Siemens Busines

HLS COMPILER

from hls4ml import ... import tensorflow as tf

train or load a model model = ... # e.g. tf.keras.models.load_model(...)

make a config template cfg = config_from_keras_model(model, granularity=`name')

tune the config cfg['LayerName']['layer2']['ReuseFactor'] = 4

do the conversion

write and compile the HLS hmodel.compile()

run bit accurate emulation y tf = model.predict(x) y_hls = hmodel.predict(x)

do some validation

run HLS synthesis hmodel.build()

Prediction

```
hmodel = convert_from_keras_model(model, cfg)
```

```
np.testing.assert_allclose(y_tf, y_hls)
```

pynq-z2 floorplan

Ideally

Reality

Ideally

- Quantization
- Pruning
- Parallelisation
- Knowledge distillation

Reality

Quantization

4B numbers in [-3.4e38, +3.4e38]

Floating point 32

Weights Layer 1

Weights Layer 2

FP16 vs FP32

Quantization

24 numbers in s*[-8, +7] **Fixed point**

Weights Layer 1

Weights Layer 2

Quantization

24 numbers in s*[-8, +7] **Fixed point** 0101.1011101010 integer fractional

width

Weights Layer 1

Weights Layer 2

hls 4 + Google Quantization-aware training

Nature Machine Intelligence 3 (2021)

Forward pass →

Back propagation B

hls 4 + Google Quantization-aware training

Nature Machine Intelligence 3 (2021)

Forward pass →

Relution of the second se

from tensorflow.keras.layers import Input, Activation from qkeras import quantized_bits from qkeras import QDense, QActivation from qkeras import QBatchNormalization

3.0

 $\mathbf{x} = \text{Input}((16))$ x = QDense(64,kernel_quantizer = $quantized_bits(6,0,alpha=1)$, bias_quantizer = quantized_bits(6,0,alpha=1))(x) x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ x = QDense(32,kernel_quantizer = $quantized_bits(6,0,alpha=1)$, $bias_quantizer = quantized_bits(6,0,alpha=1))(x)$ x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ x = QDense(32)kernel_quantizer = $quantized_bits(6,0,alpha=1)$, $bias_quantizer = quantized_bits(6,0,alpha=1))(x)$ x = QBatchNormalization()(x)

- $x = QActivation('quantized_relu(6,0)')(x)$
- x = QDense(5, kernel_quantizer = quantized_bits(6,0,alpha=1), bias_quantizer = quantized_bits(6,0,alpha=1))(x)

x = Activation('softmax')(x)

Estimating energy and size

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization

Estimating energy and size

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization

For edge inference, need best possible quantization configuration for

- Highest accuracy \uparrow ...
- ullet ... and lowest resource consumption igslash

ightarrow hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

Estimating energy and size

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization

For edge inference, need best possible quantization configuration for

- Highest accuracy \uparrow ...
- ... and lowest resource consumption \downarrow

 \rightarrow hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

Model A	ccuracy [⁰ /	%]	P	er-layer	energy	Ţ (
		Dense	ReLU	Dense	ReLU	Ι		
BF	74.4	1735	53	3240	27			
$\mathbf{Q6}$	74.8	794	23	1120	11			
Forgiving Factor = 1 +								

AutoQKeras

As optimization progresses, best model accuracy/size trade-off is found!

Example: One convolutional layer

Nature Machine Intelligence 3 (2021)

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Precision	Approx. Peak		
1b	64 000		
4b	16 000		
8b	4 000		
32b	300		

Trillions of quantized operations per second

Weights can stay entirely on-chip

Pruning

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Lottery ticket hypothesis

There exists a optimal network WITHIN each network (lottery ticket) Uncover it through pruning!

Diffenderfer, Bartoldson, et al. (2021)

Go to NeurIPS 2022 Track Datasets and Benchmarks h...

Why do tree-based models still outperform deep learning on typical tabular data? PDF

Leo Grinsztajn, Edouard Oyallon, Gael

Varoquaux

06 Jun 2022 (modified: 16 Jan 2023) NeurIPS 2022 Datasets and Readers: 🚱 Everyone Benchmarks Show Bibtex Show Revisions

Abstract: While deep learning has enabled tremendous progress on text and image datasets, its superiority on tabular data is not clear. We contribute extensive benchmarks of standard and novel deep learning methods as well as tree-based models such as XGBoost and Random Forests, across a large number of datasets and hyperparameter combinations. We define a standard set of 45 datasets from varied domains with clear characteristics of tabular data and a benchmarking methodology accounting for both fitting models and finding good hyperparameters. Results show that tree-based models remain state-ofthe art on medium-sized data (~ 10K samples) even without accounting

Computer Science > Machine Learning

[Submitted on 11 Oct 2022 (v1), last revised 25 Oct 2022 (this version, v3)]

Neural Networks are Decision Trees

Caglar Aytekin

In this manuscript, we show that any neural network with any activation function can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work provides better understanding of neural networks and paves the way to tackle their black-box nature. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages for small networks. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.

Subjects: Machine Learning (cs.LG)

arXiv:2210.05189 [cs.LG] Cite as: (or arXiv:2210.05189v3 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2210.05189 🚯

Submission history

From: Çağlar Aytekin [view email] [v1] Tue, 11 Oct 2022 06:49:51 UTC (216 KB) [v2] Mon, 17 Oct 2022 15:18:14 UTC (224 KB) [v3] Tue, 25 Oct 2022 17:32:33 UTC (240 KB)

hyperparameters. Results show that tree-based models remain state-ofthe art on modium-sized data (~ 10K samples) even without accounting

<u>https://arxiv.org/abs/2210.05189</u>

%VU9P	Accuracy	Latency	DSP	LUT
qDNN	75.6%	40 ns	22 (~0%)	1%
BDT	74.9%	5 ns	_	0.5%

Yggdrasil+Conifer

12 microseconds latency

Processing 5% of internet traffic

Journey to HL-LHC

Simulated event display with average pileup of 140 Nanosecond ML inference on FPGAs! 40 billion inferences/s during HL-LHC? $(\approx all inferences at Google)$ <µ> = 32 • L1 trigger Hardware-based, implemented in sustom-built electronics May, no tracking information $\sigma_{in}^{pp} = 69.2 \ mb$ Mean number of interactions per crossing Mean number of interactions per crossing Detectors Front end pipelines 7500 MARIES Readout 7 L1 trigger decision buffers in ~2.5 (4) µs for **[rigger**] Switching network ATLAS (CMS) ept/reject Processor 2 farms 7190 472 12.5 µs

-	10 ⁵	
-		00
	10 ⁴	
		00
-	10 ³	
		00
-	10 ²	
	10	00
-	101	00
	10	00
	0	00
	10°	_
		0
-	10 ⁻¹	

CMS High Granularity calorimeter • 6.5 million readout channels, 50 layers

- High radiation
- Cooled to $-30 \rightarrow$ low power (Max 500 mW total)
- 1.5 µs latency

Variational Autoencoder

<u>ECON-T, D. Noonan</u>

<u>ECON-T, D. Noonan</u>

AEs for compression also at LHCb!

<u>ECON-T, D. Noonan</u>

ECON-T, D. Noonan

ECON-T, D. Noonan

In HL-LHC, will need to do track finding at L1

• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency

Graph Neural Networks for fast charged particle tracking

Design	(n _{nodes} , n _{edges})	RF	Precision	Latency [cycles]	ll [cycles]	DSP [%]	LUT [%]	FF [%]	BR
Throughput-opt.	(28, 56)	1	ap_fixed<14,7>	59295 ns	1	99.9	66.0	11.7	
Resource-opt.	(28, 56)	1	ap_fixed<14,7>	79 395 ns	28	56.6	17.6	3.9	

DOI:10.3389/fdata.2022.828666

Fast jet tagging

Sets: Information is only assigned to individual nodes.

Graphs: Information is assigned to edges, i.e., pairs of nodes.

cds.cern.ch/record/2814728/

Fast jet tagging

Sets: Information is only assigned to individual nodes.

Graphs: Information is assigned to edges, i.e., pairs of nodes.

14

12

10

8

6

1/ FPR

cds.cern.ch/record/2814728/

Limitations of current trigger

Trigger threshold

Energy (GeV)

Level-1 rejects >99% of events! Is there a smarter way to select?

Trigger threshold

Energy (GeV)

Look at data rather than defining signal hypothesis a priori • Can we "classify" objects/events? clusters • normal data Х2 • noise anomalous data X_1

Ŷ

AD threshold

....in 50 nanoseconds!

CMS Experiment at the LHC, CERN Data recorded: 2023-May-24 01:42:17.826112 GMT Run / Event / LS: 367883 / 374187302 / 159

uGT test crate

CMS Global Trigger test crate:

- Copy of main GT system, receiving the same input data, but not used to trigger CMS
- Excellent test bench for future ML algorithms targeting L1T FPGAs
- AXOL1TL integrated since late 2023

Continual learning

Many reasons for changing conditions

- Detector position slightly changes
- Radiation damage

Radiation damage of silicon detector

Continual learning

Many reasons for changing conditions

- Detector position slightly changes
- Radiation damage

Continual learning to the aid for self-supervised training?

• Avoid re-training on TBs of data, adapt to gradual changes!

Radiation damage of silicon detector

.....

End-to-end?

Classical Particle Flow

CMS Simulation Preliminary $t\bar{t} + PU, \sqrt{s} = 14 \text{ TeV}$ Particle Flow reconstruction

Charged hadrons
Neutral hadrons
Photons
HFHAD

HFEM

Muons

Graph Neural Network

CMS Simulation Preliminary $t\bar{t} + PU, \sqrt{s} = 14 \text{ TeV}$ Machine-Learned Particle Flow reconstruction

> Charged hadrons Neutral hadrons Photons HFHAD

HFEM Electrons Muons

PF baseline scales non-linearily with increasing input size

Classical Particle Flow

CMS Simulation Preliminary $t\bar{t} + PU, \sqrt{s} = 14 \text{ TeV}$

Particle Flow reconstruction

HFEM Electro

GNN-based model inference time scales approximately linearly with increasing input size

Graph Neural Network

About 121'000 results (0.26 seconds)

Game Is Hard

AMD Aims to Challenge Nvidia in the AI Hardware Market

AMD recently announced its optimistic projections for the upcoming fiscal year, with a focus on its new AI chip platform.

17 hours ago

Tech Xplore

The future of AI hardware: Scientists unveil all-analog photoelectronic chip

Researchers from Tsinghua University, China, have developed an all-analog photoelectronic chip that combines optical and electronic...

21 hours ago

1 The Information

An Al Chip Armageddon is Coming; Biden Punts on Open-Source LLMs

When I asked David Bennett, the chief customer officer of AI hardware developer Tenstorrent, about the future of startups like his,...

17 hours ago

BBVA Openmind Λ

Green Artificial Intelligence

As the prominence of AI continues to grow, so too does the need to address its environmental impact, particularly in terms of carbon...

More and more dedicated AI processors on the market

Xilinx Versal AI processors

- Programmed in C/C++
- 400 AI processors, ~2M logic cells (FPGA), 2k DSPs, Arm CPU and RPU
- Data move back and forth between AI Engines and FPGA

Currently explored for real-time tracking in trigger application

GNNs with Versal AI, P. Schwaebig

CMS*Public* Total CPU HL-LHC (2031/No R&D Improvements) fractions 2022 Estimates

CMS Offline Computing Results

neva TIER 0: ∞	
ATLAS	
	VU23P
	-nroce
Number ofBatchInf./sBandwidthDevicesSize[Hz][Gbps]	
1 16,000 36M 23	
1 16,000 80 MI 55 1 16,000 8 M 5.1	

<u>C. Beteta, I. Bezshyiko, N. Serra</u>

Triggering in other experiments

Snowmass: the full report Taking plasma accelerators to market

<u>F. Capel et al.</u>

Bioluminescence bursts up to few MHz!

Signals and backgrounds

F. Capel et al.

...and outside of particle physics

CMS

CMS Simulation Preliminary $t\bar{t} + PU, \sqrt{s} = 14 \text{ TeV}$ Machine-Learned Particle Flow reconstruction

> Charged hadrons eutral hadrons HFHAD

HFEM

Electrons

Join us at the FastML Lab!

AXOLITL

1110 (00) 4010L

arearonio gine

Charged

see

Backup

Benchmarking

Datasets: Common FastML Science Benchmarking datasets

• guide design of edge ML hardware and software for sub-microsecond inference!

Algorithms: hls4ml-FINN benchmarked in MLPerf[™]

- how fast systems can process inputs and produce results
- efficient and low-latency FPGA solutions with hls4ml and FINN

Consistently competitive (QKeras+hls4ml, semantic segmentation, MLPerf)

Model	LUT		LUTRAM		FF		BRAM [36 kb]	
			•			Pynq	-Z2	
Available	53 200		17 400		106 400		140	
IC (hls4ml)	28 544	53.7%	3756	21.6%	49 215	46.3%	42	30.0%
IC (FINN)	24 502	46.1%	2 0 8 6	12.0%	34 354	32.3%	100	71.4%
AD	40 658	76.4%	3 6 5 9	21.0%	51 879	48.8%	14.5	10.4%
KWS	33 7 32	63.4%	1 0 3 3	5.9%	34 405	32.3%	37	26.4%

<u>https://mlcommons.org/en/inference-tiny-07/</u>

arxiv:2103.05579

LHCb GPU trigger

Full GPU reconstruction @ 4% internet traffic

• 326 GPUs, 60 kHz per GPU

Characteristics of LHCb HLT1	Characteristics of GPUs			
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications			
Huge compute load	Many TFLOPS			
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs			
Small raw event data (~100 kB)	Connection via PCIe \rightarrow limited I/O bandwidth			
Small event raw data (~100 kB)	Thousands of events fit into O(10) GB of memory			

<u>C. Fitzpatrick</u>

<u>Upgrade Computing Model TDR</u>

(CPU HLT2)

https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/

QPYTÖRCH ?

Brevitas like QKeras, but for PyTorch

- QAT library
- Support most common layers and activation functions

Other quantization techniques:

- HAWQ: Hessian AWare Quantization
- Quantization Aware Pruning (B. Hawks et al.)

https://github.com/Xilinx/brevitas

import brevitas.nn as qnn						
qnn.						
🖧 quant_bn (brevitas.nn)						
🕡 💿 QuantCat	brevitas.nn.quant_eltwise					
💿 QuantTanh	brevitas.nn.quant_activation					
💿 ScaleBias	brevitas.nn.quant_scale_bias					
🖧 quant_conv (brevitas.nn)						
<mark>橡 hadamard_classifier</mark> (brevitas.nn)						
🚽 💑 quant_accumulator (brevitas	.nn)					
🖞 💑 quant_activation (brevitas.	nn)					
🖞 🛃 quant_avg_pool (brevitas.nn)						
🖧 quant_convtranspose (brevitas.nn)						
🖧 quant_dropout (brevitas.nn)						
🗧 💑 quant_eltwise (brevitas.nn)						
🖧 quant_linear (brevitas.nn)						
💑 quant_max_pool (brevitas.nn)						
🖧 quant_scale_bias (brevitas.nn)						
🖕 quant_upsample (brevitas.nn)						
BatchNorm1dToQuantScaleBias	brevitas.nn.quant_bn					
BatchNorm2dToQuantScaleBias	brevitas.nn.quant_bn					
🕒 🕒 ClampQuantAccumulator	brevitas.nn.quant_accumulator					

QPYTÖRCH ?

hls4ml collaborate with Xilinx Research Labs to develop QOONX

- Introducing 'Quant' node to ONNX graph
- Brevitas (PyTorch) and QKeras (Keras) can export QONNX (HAWQ export in progress): then hls4ml and FINN can import QONNX

Co-Design for Efficient & Adaptive ML

Yaman Umuroglu

Blackett Laboratory, Lecture Theatre 1, Imperial College London

<u>Quantized ONNX (QONNX), J. Mitrevski et. al</u>

hls4ml in other CERN experiments

ATLAS small wheel muon segment finding and reconstruction (R&D)

- Regression of muon position and angle
- 400 ns budget

<u>R. Teixeira de Lima, R Rojas Caballero et al.</u>

Can we have the best of both worlds?

Knowledge Distillation

Inference

is cat
is dog

Train student to learn both true and predicted (teacher) labels!

 $L_{total} = \beta \times L_{Distillation} + \alpha \times L_{student}$

Student learns subtle learned features from teacher!

<u>C. Beteta, I. Bezshyiko, N. Serra</u>

High throughput GPU triggers

High throughput GPU triggers

40 MHz nn collicione

CMS Offline Computing Results

HL-LHC, Simulation of CMS HGCAL with 140 PU

CMS*Public* Total CPU HL-LHC (2031/No R&D Improvements) fractions 2022 Estimates

CMS Offline Computing Results

 10^{-18} m

 10^{-15} m 10^{-6} m

81%

simulation [Hard & Slow]

GEANT

DIGI+RECO

Energy deposits→digital signals→reconstructed by the reconstruction software [Hard & Slow]

Diffusion models

<u>Dall-e 2</u>

decoder

https://arxiv.org/pdf/2303.05376.pdf

<u>Dall-e 2</u>

vibrant portrait painting of Salvador Dalí with a robotic half face

