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NVIDIA Press Release 2020 

Train (GPT-3):  
• 285,000 CPU cores 
• 10,000 GPUs  
• 400 Gb/s network 
• Several weeks 
• Trained on ~3OOB tokens

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/


NVIDIA Press Release 2020 

Train (GPT-3):  
• 285,000 CPU cores 
• 10,000 GPUs  
• 400 Gb/s network 
• Several weeks 
• Trained on ~3OOB tokens

Inference (GPT-3):  
• ?

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/


?
~700 GB of memory   
(175B par × 4 bytes/par) 
→ O(101) larger than max  
memory in single GPU

~350 GB 
(175B param × 2 bytes/par) 
→ 11 NVIDIA V100  ($10 000/ea)

→

→



AI & Memory Wall

5 of these to fit one 
GPT-3 at inference 
time! Price: $17,000

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


AI & Memory Wall

5 of these to fit one 
GPT-3 at inference 
time! Price: $17,000

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Kaplan et al. (2020)
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Figure �.�: Test loss of a languagemodel vs. the amount
of computation in peta�op/s-day, the data set size in
tokens, that is fragments of words, and the model size
in parameters [Kaplan et al., ����].
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CV: 10–100M trainable parameters, 1018 –1019 FLOPs for training

LLM: 100M to 100Bs trainable parameters,1020–1023 FLOPs for training



Resources: 11 interconnected GPUs 
Latency :    101 seconds



Max atency 10 seconds

Resources: One single chip 
Latency:      10-9 seconds

Resources: 11 interconnected GPUs 
Latency :    101 seconds



EFFICIENT AI

Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better, G Menghani 

tinyML

Low power

On-device

Low-latency

High-throughput

(Data-efficient)

https://arxiv.org/abs/2106.08962
https://www.tinyml.org/


Francois Lanusse

10 million alerts (~20 TB) per night  
at ~500Hz inference rate  

60 second latency 



?

https://arxiv.org/abs/2102.04555 

https://arxiv.org/abs/2102.04555


Cherenkov Telescope Array (CTA) 
CTA trigger: 72 Tb/s - 33 μs - FPGA based 



https://a3d3.ai/ 

https://a3d3.ai/
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On-detec tor  ML

25 ns

7.5 m

2.2·1011 protons

2,500 bunches 
 1011 protons 

11,000 times/s
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On-detec tor  ML

O(1) billion collisions per second 
O(1) PB of data per second



Higgs produced 
~1 in a billion collisions! 

Saving all collisions not useful  
(even if we could)! 
 

 
 

13 TeV

“Probability” of  
producing a Higgs

“Probability” of  
producing “anything”
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On-detec tor  ML

2 step rate reduction 
(hardware+software)

Software rate reduction 
(GPU+CPU)

2 step rate reduction 
(hardware+software)

Continous read-out 
(CPU+GPU)
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On-detec tor  ML

2 step rate reduction 
(hardware+software)
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On-detec tor  ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 trigger: 
(~1000 FPGAs) 

Decide which 
event to keep 
within ~4 µs 

Reject >99% of 
collisions!

2 Tb/s to L1
Data temporarily stored  

in detector electronics for 4 µs 
(frontend buffering limit) 
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 bit: 
Accept = 1 
Reject = 0
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 accept: 
O(100) kHz 

~Tb/s

High Level Trigger: 
25’600 CPUs / 400 GPUs 

Latency: 3-400 ms 

Reject further 99%!
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On-detec tor  ML TIER 0: ∞

High Level Trigger:  
Latency 0(100) ms

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

L1 accept: 
O(100) kHz 

~Tb/s

0.0025% of collision events remaining

HLT accept:  
O(1) kHz 

~Gb/s
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To make sure we select “the right” 0.0025%, algorithms must be 

• Fast (get more data through) 
• Accurate (select the right data) 

HIG-19-001 

https://cds.cern.ch/record/2668684?ln=en


Searches for new particles at LHC
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New Physics is produced less than 
1 in a trillion (if at all) 
 
Need more data!  

 
 
 
 

13 TeV

New Physics?

Total



LHC (TODAY!) MAJOR UPGRADE HL-LHC

Run 3 Run 4+5

High Luminos i ty  LHC

New Physics is produced 1 in a trillion 
• Need more collisions to observe rare processes 

High Luminosity LHC 
• ⨉10 data size 
• ⨉3 collisions/s 

 
 
 
 

2022 - 2025 2026 - 2028 2029 - 2038
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High Luminos i ty  LHC

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

78 vertices 
(average 60)

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

200 vertices  
(average 140)

LHC

Run 3 Run 4+5

6 cm



CMS HGCAL TDR

Maintain physics acceptance → better detectors 

CMS High Granularity (endcap) calorimeter 
• 85K (today) → 6M (HL-LHC) readout channels 

More collisions  
More readout channels 

 
 
 
 
 
 
 

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf


CMSOfflineComputingResults 

Comput ing  resources

 
… flat computing budget

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Todays  a lgor i thms wi l l  no t  be  susta inable  in  HL-LHC!  
 

→  Need modern  Machine  Learn ing  to  become 
 

fas ter  
be t ter  

and  do  more   

More  complex  arch i tec tures  to  dea l  wi th  increased 
data  complex i ty !
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Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

HL-LHC L1: 
• Tracking 
• Particle Flow 
• HGCal 

Input data 
• 2 Tb/s → 63 Tb/s 

Latency 
• 4 µs → 12 µs



Level-1 trigger:  
Latency O(1) µs Detector: 

40 MHz 
~Pb/s

Fast inference on specialised hardware

FPGA inferenceASIC inference

GPU inference

HLT trigger:  
Latency O(100) ms 



266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY: 
370 FPGAs MUONS: 

96 FPGAs

TRACKING 
174 FPGAs

12.5 µs

Trigger 
accept/reject

5 µs

PARTICLE 
FLOW: 

66 FPGAs 

GLOBAL 
TRIGGER: 
24 FPGAs 

*54 for HGCAL only!

63 Tb/s

Xilinx Ultrascale+ FPGAs
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CALORIMETRY: 
370 FPGAs MUONS: 
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GLOBAL 
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*54 for HGCAL only!

63 Tb/s

Xilinx Ultrascale+ FPGAs

Challenges
• Price to pay for high luminosity  

— extreme pileup  
‣ At HL-LHC, expect on average  
200 overlapping pp collisions 

• Particularly challenging for  
trigger system 
‣ Inclusion of tracking central to 

mitigating effects of pileup

!4

ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT

19

ATLAS:  3 physical levels CMS:  2 physical levels

Wesley Smith, U. Wisconsin, October 3, 2013 ECFA – HL-LHC: – Trigger & DAQ -  3 

Journey to HL-LHC 
2012-2013 run: 

•  Lumi = 7 x 1033, PU = 30, E = 7 TeV, 50 nsec bunch spacing 
•  2012 ATLAS, CMS operating: 

•  L1 Accept ≤ 100 kHz,  
•  Latency ≤ 2.5 (AT), 4 µsec (CM) 
•  HLT Accept ≤ 1 kHz 

Where ATLAS & CMS will be: 
•  Lumi = 5 x 1034 

•  <PU> = 140, Peak PU = 192 (increase × 6)  
•  E = 14 TeV (increase × 2)  
•  25 nsec bunch spacing (reduce × 2) 
•  Integrated Luminosity > 250 fb-1 per year  

Need to establish scenario for L1 Accept, Latency, HLT 
Accept & new trigger “features” (e.g. tracking trigger) 

Front  end pipelines 

Readout buffers 

Processor farms 

Switching network 

Detectors 

Lvl-1 

HLT 

Lvl-1 

Lvl-2 

Lvl-3 

Front end pipelines 

Readout buffers 

Processor farms 

Switching network 

Detectors 

ATLAS: 3 physical levels CMS: 2 physical levels 

Detectors

Front end 
pipelines

Readout 
buffers
Switching 
network
Processor 
farms

Detectors

Front end 
pipelines

Readout 
buffers
Switching 
network
Processor 
farms

40 MHz

L1 output:  75 kHz

~3 kHz

200 Hz

40 MHz

100 Hz

L1 trigger decision 
in ~2.5 (4) µs for 

ATLAS (CMS)

L1 output:  100 kHz

40 MHz

100 kHz

~1 kHz

750 kHz

7.5 kHz

LHC HL-LHC
40 MHz

L1 output:

HLT output:

Simulated event display with average pileup of 140
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• Trigger system reduces 40 MHz 
collision rate to data rate that can be 
read out & written to disk 

• w/o tracking, L1 output for PU=200 
is ~4000 kHz



Why FPGAs?

Full GPU reconstruction @ 4 TB/s 
• 326 GPUs, 60 kHz per GPU

LHCb: 
Software rate reduction 

(GPU+CPU)



Why FPGAs?

Full GPU reconstruction @ 4 TB/s 
• 326 GPUs, 60 kHz per GPU

LHCb: 
Software rate reduction 

(GPU+CPU)

Depends on your problem…

→ LHCb has already read out 
detector 

→ CMS frontend buffers strictly 
limited, cannot tolerate latency slack 

→ CMS raw event data x10 larger, L1 
“event” ~ 200 kB (possible with GPU) 
 



266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger
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adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

Why FPGAs?

Latency, latency, latency (cannot do much on a GPU IN 4 µs) 
• Can work on different parts of problem, different data simultaneously 
• Latency strictly limited by detector frontend buffer 

Latency deterministic 
• CPU/GPU processing randomness, FPGAs repeatable and predictable latency 

High bandwidth 
• L1T processes 5% of total internet traffic, dissipate heat of ~7W/cm2 

Work on 18 events  
simultaneously!



Programming an  FPGA

Vivado 
HLS

Intel 
HLS

Catapult 
HLS

Vivado 
Accelerator

Vitis 
HLS

Xilinx Intel Mentor

C/C++  
algorithm

Constraints/ 
Directives

VHDL/Verilog

Firmware block

(CMS, ATLAS) (LHCb,  
ATLAS)

(ASICs)



Vivado 
HLS

Intel 
HLS

Catapult 
HLS

Vivado 
Accelerator

Vitis 
HLS

Xilinx Intel Mentor

C/C++  
algorithm

Constraints/ 
Directives

VHDL/Verilog

Firmware block

Programming an  FPGA





Gener ic  (super fas t )  HLS 
implementa t ions  for  DNN 
in ference?

hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

L1
Ln

LN
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TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA 
 

  
HLS project: 

Xilinx Vivado HLS, Intel Quartus HLS,  
Mentor Catapult HLS

pip install hls4ml 

pip install conifer

 Vitis 

https://github.com/fastmachinelearning/hls4ml 
https://fastmachinelearning.org/hls4ml/

KERAS / PyTorch / ONNX

TensorFlow DF / scikit-learn / XGBoost

Vivado / Vitis / Intel Quartus / 
IntelOne API / Catapult

https://github.com/fastmachinelearning/hls4ml


Model 
(quantized/pruned)

Quantized:

Q

Q ERAS



Model 
(quantized/pruned)

Quantized:

Q

Q ERAS

 
 
 
 
 
 

Convert model to internal 
representation 

Write HLS project targeting 
specified backend 

 
Run emulation  

Run synthesis

Vivado/Vitis best supported 
Intel Quartus 
Intel One API 
Mentor Catapult HLS 
available soon



Model 
(quantized/pruned)

Co-processing kernel  
(Xilinx accelerators/SoCs) 

FPGA custom designs 
 (eg trigger algorithms) 

ASICs 

Quantized:

Q

Q ERAS

 
 
 
 
 
 

Convert model to internal 
representation 

Write HLS project targeting 
specified backend 

 
Run emulation  

Run synthesis

Vivado/Vitis best supported 
Intel Quartus 
Intel One API 
Mentor Catapult HLS 
available soon



Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

from hls4ml import … 
import tensorflow as tf 

# train or load a model 
model = … # e.g. tf.keras.models.load_model(…) 

# make a config template 
cfg = config_from_keras_model(model, 
granularity=‘name’) 

# tune the config 
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4 

# do the conversion 
hmodel = convert_from_keras_model(model, cfg) 

# write and compile the HLS 
hmodel.compile() 

# run bit accurate emulation 
y_tf = model.predict(x) 
y_hls = hmodel.predict(x) 

# do some validation 
np.testing.assert_allclose(y_tf, y_hls) 

# run HLS synthesis 
hmodel.build()

 (from Sioni S Summers)

https://arxiv.org/abs/1804.06913
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Efficient NN design: quantization
• In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent 
fractional values

• But we have to make sure we’ve used the correct data types!
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Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

Small bit width, severe drop in accuracy

arXiv:1804.06913 

https://arxiv.org/abs/1804.06913
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Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization 

Est imat ing  energy  and  s ize

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323


Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization 

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓ 

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

Est imat ing  energy  and  s ize

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323
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TABLE II. Per-layer energy estimation for the baseline floating point model and a QKeras quantized 6-bit (Q6) model.

Model Accuracy [%] Per-layer energy consumption [pJ] Total energy [µJ] Total bits

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF 74.4 1735 53 3240 27 1630 27 281 11 0.00700 61446

Q6 74.8 794 23 1120 11 562 11 99 11 0.00263 26334

B. Defining a forgiving factor

With the high-level estimate of a given layers energy
consumption provided by QTools, we define a forgiving
factor to be targeted during automatic quantization of
the model, providing a total loss function which combines
energy cost and accuracy. The forgiving factor allows one
to tolerate a degradation in a given metric, such as model
accuracy, if the model gain in terms of some other metric,
like model size, is significantly larger. Here, we allow the
forgiving metric to be either minimization of the model
bit-size or minimization of the model energy consumption.
The forgiving factor is defined by

FF = 1 +�acc ⇥ logR(S⇥
Cref

Ctrial
), (1)

where �acc is the tolerated reduction in accuracy in per-
cent, R is the factor stating how much smaller energy
the optimized model must have compared to the origi-
nal model (as a multiplicative factor to the FF metric)
and S is a parameter to reduce the reference size, e↵ec-
tively forcing the tuner to choose smaller models. The
parameters Cref and Ctrial refer to the cost (energy or
bits) of the reference model and the quantization trial
model being tested, respectively. The forgiving factor
can be interpreted in the following way: If we have a
linear tolerance for model accuracy degradation (or any
other performance metric), we should be able to find a
multiple of that degradation in terms of the cost reduction
of the implementation. It enables an automatic quanti-
zation procedure to compensate for the loss in accuracy
when comparing two models, by acting as a multiplicative
factor.

Automatic quantization and re-balancing are then per-
formed by treating quantization and re-balancing of an
existing DNN as a hyper parameter search in Keras
Tuner [44] using random search, hyperband [45] or Gaus-
sian processes. We design an extension to Keras Tuner
called AutoQKeras, which integrates the forgiving factor
defined in Eq. 1 and the energy estimation provided by
QTools. This allows for simultaneously tuning of the
model quantization configuration and the model architec-
ture. For instance, AutoQKeras allows for tuning of the
number of filters in convolutional layers and the number
of neurons in densely connected layers. This fine-tuning
is critical, as when models are strongly quantized, more
or fewer filters might be needed. Fewer filters might be
necessary in cases where a set of filter coe�cients get
quantized to the same value.
Consider the example of quantizing two set of filter

coe�cient [�0.3, 0.2, 0.5, 0.15] and [�0.5, 0.4, 0.1, 0.65].

If we apply a binary quantizer with scale =⌃
log2(

P
|w|
N )

⌥
, where w are the filter coe�cients and

N is the number of coe�cients, we will end up
with the same filter binary([�0.3, 0.2, 0.5, 0.15]) =
binary([�0.5, 0.4, 0.1, 0.65]) = [�1, 1, 1, 1] ⇥0.5. In this
case, we are assuming a scale is a power-of-2 number
so that it can be e�ciently implemented as a shift oper-
ation. On the other hand, more filters might be needed
as deep quantization drops information. To recover some
of the boundary regions in layers that perform feature
extraction, more filters might be needed when the layer
is quantized. Lastly, certain layers are undesirable to
quantize, often the last layer of a network. In principle,
we do not know if by quantizing a layer we need more
or less filters, and as a result, there are advantages to
treating these problems as co-dependent problems, as we
may be able to achieve a lower number of resources.

In AutoQKeras, one can specify which layers to quantize
by specifying the index of the corresponding layer in Keras.
If attempting to quantize the full model in a single shot,
the search space becomes very large. In AutoQKeras,
there are two methods to cope with this: grouping layers
to use the same choice of quantization, or quantization
by blocks. For the former, regular expressions can be
provided to specify layer names that should be grouped
to use the same quantization. In the latter case, blocks
are quantized sequentially, either from inputs to outputs
or by quantizing higher energy blocks first. If blocks are
quantized one-by-one, assuming each block has N choices
and the model consists of B blocks, one only needs to
try N ⇥B, rather than NB options. Although this is an
approximation, it is a reasonable trade-o↵ considering the
explosion of the search space for individual filter selections,
weight and activation quantization.

Whether to quantize sequentially from inputs to out-
puts or starting from the block that has the highest energy
impact, depends on the model. For example for a network
like ResNet [46], and if filter tuning is desirable, one needs
to group the layers by the ResNet block definition and
quantize the model sequentially to preserve the number of
channels for the residual block. A few optimizations are
performed automatically during model training. First, we
dynamically reduce the learning rate for the blocks that
have already been quantized so that they are still allowed
to train, but at a slower pace. Also, we dynamically adjust
the learning rate for the layer we are trying to quantize
as opposed to the learning rate of the unquantized layers.
Finally, we transfer the weights of the model blocks we
have already quantized whenever possible (when shapes
remain the same). We then use AutoQKeras to find
the optimal quantization configurations for the baseline

Maximize accuracy + minimizing cost in hyper parameter scan over quantizers: 
AutoQKeras 

Forgiving Factor = 1 + Δaccuracy × lograte(S ×
Costref

Costtrial
)

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization 

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓ 

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously
 
QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

Est imat ing  energy  and  s ize

https://github.com/google/qkeras/blob/master/notebook/AutoQKeras.ipynb
https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323


As optimization progresses, 
best model accuracy/size  
trade-off is found!

DOI 10.1088/2632-2153/ac0ea1 

Example: One convolutional layer

https://iopscience.iop.org/article/10.1088/2632-2153/ac0ea1
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Efficient NN design: compression

• DSPs (used for multiplication) are often 
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision
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Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Reducing precision saves resources used for signal routing as well as resources and latency used
for mathematical operations. For many applications, the limiting FPGA resource will be the number of
DSPs, which are used primarily for multiplications. The number of DSPs used per multiplier depends
on the precision of the numbers being multiplied and can change abruptly. For example, one Xilinx
DSP48E1 block [90] can multiply a 25-bit number with an 18-bit number, but two are required to
multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

As mentioned in Sec. 2.1, non-trivial activation functions are precomputed for a range of input
values and stored in BRAMs. The binning within this range and the output bit width are configurable
in hls4ml. Lastly, we note that additional methods exist to further compress the network architecture
through quantization that have not been explored in this paper [82, 88]. In particular, retraining the

– 12 –
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TF Sparsity
l Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly 

increasing up to the set target as training proceeds

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
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266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable
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63 Tb/s

12 microseconds latency
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Challenges
• Price to pay for high luminosity  

— extreme pileup  
‣ At HL-LHC, expect on average  
200 overlapping pp collisions 

• Particularly challenging for  
trigger system 
‣ Inclusion of tracking central to 

mitigating effects of pileup
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ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT
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Journey to HL-LHC 
2012-2013 run: 

•  Lumi = 7 x 1033, PU = 30, E = 7 TeV, 50 nsec bunch spacing 
•  2012 ATLAS, CMS operating: 

•  L1 Accept ≤ 100 kHz,  
•  Latency ≤ 2.5 (AT), 4 µsec (CM) 
•  HLT Accept ≤ 1 kHz 

Where ATLAS & CMS will be: 
•  Lumi = 5 x 1034 

•  <PU> = 140, Peak PU = 192 (increase × 6)  
•  E = 14 TeV (increase × 2)  
•  25 nsec bunch spacing (reduce × 2) 
•  Integrated Luminosity > 250 fb-1 per year  
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Accept & new trigger “features” (e.g. tracking trigger) 
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• Trigger system reduces 40 MHz 
collision rate to data rate that can be 
read out & written to disk 
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Nanosecond ML inference on FPGAs!

40 billion inferences/s during HL-LHC?
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The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+
200 vertices

CMS High Granularity calorimeter 
• 6.5 million readout channels, 50 layers
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200 vertices

Encoder architecture

4

Compress data ON the detector 
• ASICs reduce + transmit data 

• 40 MHz trigger data 
• 750 kHz DAQ data 

• High radiation 
• Cooled to -30 → low power (Max 500 mW total) 
• 1.5 µs latency
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HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC
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Encoder architecture

4

Encoded dataEncoded data

ENCODE DECODEBottleneck 
(lower dim.  

space)

Var ia t ional  Autoencoder

Encoder architecture

4

ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf


Transmit encoded data!

Encoded data
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ECON-T, D. Noonan 

AEs for compression also at LHCb! 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
https://sse-ml-lhcb.gitlab.io/
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• 75-100 mW 
• Triplicated w/b for radiation safety 

Reprogrammable w/b over IC2!
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AEs for compression also at LHCb! 

• 75-100 mW 
• Triplicated w/b for radiation safety 

Reprogrammable w/b over IC2!

FKeras

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
https://sse-ml-lhcb.gitlab.io/
https://indico.cern.ch/event/1283970/contributions/5550653/attachments/2722805/4730907/fkeras-fastml23.pdf


In HL-LHC, will need to do track finding at L1 
• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency 

Graph Neural Networks for fast charged particle tracking 
 
 
 
 
 
 

DOI:10.3389/fdata.2022.828666 

ML for  t rack ing

295 ns

395 ns

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full


Fast  je t  tagg ing

cds.cern.ch/record/2814728/ 

??

https://cds.cern.ch/record/2814728/files/DP2022_021.pdf


Fast  je t  tagg ing

cds.cern.ch/record/2814728/ 

(Can also do 90 ns transformers for jet tagging!)

??

https://cds.cern.ch/record/2814728/files/DP2022_021.pdf
https://www.doc.ic.ac.uk/~wl/papers/22/fpt22fw.pdf
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From A. Rizzi
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Exploit the full capabilities 
of the LHC and be more generic!
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Scenario 1) There is some NP signature we haven't though of and we do not trigger on

Scenario 2) Even for signatures we already look for, some regions out of reach due to L1 trigger



Limi ta t ions  o f  current  t r igger

CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Look at data rather than defining signal hypothesis a priori 
• Can we “classify” objects/events? 

 

 
 
 
 
 
 
 
 
 
 

anomalous data
noise 

normal data 



pT η φ

x x̂

pT η φ



pT η φ

x x̂

pT η φ



Reconstruction error
AD threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Everything here 
is normal

Everything here 
is abnormal 

….in 50 nanoseconds!



Event Display

12

Event display of the highest anomaly score event 
that is not selected by the normal L1T menu, from 
Ephemeral Zero Bias 2023 Run 367883. 

This event features the maximal number of L1 
jets (12), out of which 11 have ET > 20 GeV. It 
also features a 3 GeV L1 muon. The offline 
reconstruction identifies 7 jets (reconstructed with 
the PUPPI algorithm) with pT > 15 GeV, and 1 
muon. 
 
The event is also characterized by a very unlikely 
large number of reconstructed vertices (75), given 
the pile up profile of the data taken in Run 2 and 
Run 3. 
 
 
        



uGT tes t  cra te

CMS Global Trigger test crate: 
• Copy of main GT system, receiving 

the same input data, but not used 
to trigger CMS 

• Excellent test bench for future ML 
algorithms targeting L1T FPGAs 

• AXOL1TL integrated since late 2023 
 
 
 
 



Many reasons for changing conditions 
• Detector position slightly changes 
• Radiation damage 

 
 
 
 
 
 

Cont inual  learn ing

Radiation damage of silicon detectorIncreasing radiation damage

Time                        

“Transparent” 
Sensors

“Opaque” 
Sensors

https://cds.cern.ch/record/2859651



Many reasons for changing conditions 
• Detector position slightly changes 
• Radiation damage 

Continual learning to the aid for self-supervised training? 
• Avoid re-training on TBs of data, adapt to gradual changes! 

 
 
 

Cont inual  learn ing

Radiation damage of silicon detectorIncreasing radiation damage

Time                        

“Transparent” 
Sensors

“Opaque” 
Sensors

https://cds.cern.ch/record/2859651



End-to-end?

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

Classical Particle Flow Graph Neural Network
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5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

Classical Particle Flow Graph Neural Network

https://arxiv.org/abs/2101.08578




More and more dedicated AI processors on the market 

Xilinx Versal AI processors 
• Programmed in C/C++ 
• 400 AI processors, ~2M logic cells (FPGA), 2k DSPs, Arm CPU and RPU 
• Data move back and forth between AI Engines and FPGA 

Currently explored for real-time tracking in trigger application

AI  hardware GNNs with Versal AI, P. Schwaebig 

https://indico.cern.ch/event/1156222/contributions/5062808/attachments/2521174/4335154/slides_fastml_workshop_2022_.pdf


CMS Offline Computing Results 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

On-detec tor  ML

FaaST, D. Rankin et. al 

FPGA co-processors

TIER 0: ∞

https://inspirehep.net/files/8036b4272f91a91bb357472313ce5933


FPGAs as  acce lera tors

C. Beteta, I. Bezshyiko, N. Serra

Particle flow 

17 July, 2014 CMS induction ,  T. Camporesi 32 

DAQ CO-PROCESSING



F. Capel et al. 
Tr igger ing  in  o ther  exper iments

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf


Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

Bioluminescence bursts up to few MHz!



F. Capel et al. 

Data to shore

     

Signals and backgrounds

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf


Semantic segmentation for autonomous vehicles 
Seizure Predicting Brain Implant 
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…and outs ide  o f  par t i c le  phys ics

N. Ghielmetti et al. 

NN accelerator for quantum control 
• Putting control in cryostat  

(e.g optimal pulse parameters) 

D Xu et al. 

Other examples 
• For fusion science phase/mode monitoring  
• Crystal structure detection  
• Triggering in DUNE  
• Accelerator control  
• Magnet Quench Detection 
• MLPerf tinyML benchmarking  
• Food contamination detection  
• etc….  

 

W. Lemaire et al. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://arxiv.org/abs/2206.11791
https://ieeexplore.ieee.org/document/9181293
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf
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Join us at the 
FastML Lab!

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

https://fastmachinelearning.org/


Backup



Datasets: Common FastML Science Benchmarking datasets  
• guide design of edge ML hardware and software for sub-microsecond 

inference! 

Algorithms: hls4ml-FINN benchmarked in MLPerf™ 
• how fast systems can process inputs and produce results 
• efficient and low-latency FPGA solutions with hls4ml and FINN 

Consistently competitive (QKeras+hls4ml, semantic segmentation, MLPerf) 
 
 
 
 
 

Benchmarking

arxiv:2207.07958 

https://mlcommons.org/en/inference-tiny-07/ 

arxiv:2103.05579 

https://arxiv.org/abs/2207.07958v1
https://mlcommons.org/en/inference-tiny-07/
https://arxiv.org/pdf/2103.05579.pdf
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LHCb GPU t r igger
LHCb GPU

Introduction

The LHCb detector

Upgrade 1

Why GPUs

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

Trigger & Reconstruction
I RTA: Real-Time Analysis (or Reconstruction, Trigger, Alignment)

EVENTS

FULL 
DETECTOR 
READOUT

 

 

REAL-TIME 
ALIGNMENT & 
CALIBRATION

LHC BUNCH 
CROSSING (40 MHz)

BUFFER

OFFLINE 
PROCESSING

ANALYSIS 
PRODUCTIONS & 
USER ANALYSIS

68% 
TURBO

26% 
FULL

6% 
CALIB

4 TB/s 
30 MHz non-empty pp

70-200 
GB/s

4  
TB/s

0.5-1.5 
MHz

10 
GB/s

EVENTS

EVENTS

(GPU HLT1)

PARTIAL DETECTOR 
RECONSTRUCTION 

& SELECTIONS

(CPU HLT2)

FULL DETECTOR 
RECONSTRUCTION 

& SELECTIONS
5.9 

GB/s

1.6 
GB/s

2.5 
GB/s

All numbers related to the dataflow are 
taken from the LHCb 

Upgrade Trigger and Online TDR  
Upgrade Computing Model TDR

EVENTS

I Builds on successful hybrid strategy for Run 2.

I In 2022 the GPU HLT1 (Allen4) was commissioned and took decisions for the first
time

4
[ Comput Softw Big Sci 4, 7 (2020)] LHCb-TDR-021

7 / 13

LHCb GPU

Introduction

The LHCb detector

Upgrade 1

Why GPUs

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

Why GPUs?
I The Allen team identified that GPUs are well suited to HEP reconstruction and

trigger workloads:

I Key insight: Using GPUs as processors instead of coprocessors avoids
overheads

I But where to place them?

8 / 13

Full GPU reconstruction @ 4% internet traffic 

• 326 GPUs, 60 kHz per GPU

C. Fitzpatrick 

https://indico.jlab.org/event/459/contributions/11817/attachments/9504/13779/LHCb_GPU_CHEP.pdf


https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
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Q                  ?

Brevitas like QKeras, but for PyTorch 
• QAT library 
• Support most common layers and activation functions 

Other quantization techniques: 
• HAWQ: Hessian AWare Quantization 
• Quantization Aware Pruning (B. Hawks et al.) 
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Inception-V3 on ImageNet
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Fig. 1: Top eigenvalue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet
(Right). Note that the magnitudes of eigenvalues of different blocks varies by orders of magnitude. See Figure 6 and 7 in
appendix for the 3D loss landscape of other blocks.

to determine which layers to quantize first is factorial in
the number of layers. In this paper, we propose a Hessian
guided approach to address these challenges. In particular, our
contributions are the following.

1) The search space for choosing mixed-precision quanti-
zation is exponential in the number of layers. Thus, we
present a novel, deterministic method for determining the
relative quantization level of layers based on the Hessian
spectrum of each layer.

2) The search space for quantization-aware fine-tuning of the
model is factorial in the number of blocks/layers. Thus, we
propose a Hessian based method to determine fine-tuning
order for different NN blocks.

3) We perform ablation study of HAWQ, and we present
novel quantization results using ResNet20 on Cifar10, as
well as Inception-V3/ResNet50/SqueezeNext on ImageNet.
Comparison with state-of-the-art shows that our method
achieves higher precision (up to 1%), smaller model size
(up to 20%), and smaller activation size (up to 8⇥).

The paper is organized as follows. First, in § II, we
will discuss related works on model compression. This is
followed by describing our method in § III, and our results in
§ IV. Finally, we present ablation study in § V, followed by
conclusions.

II. RELATED WORK

Recently, significant efforts have been spent on developing
new model compression solutions to reduce the parameter size
as well as computational complexity of NNs [4], [8], [11], [28],
[5], [42], [17], [13], [3], [41]. In [9], [22], [20], pruning is
used to reduce the number of non-zero weights in NN models.
This approach is very useful for models that have very large
fully connected layers (such as AlexNet [18] or VGG [33]).

For instance, the first fully-connected layer in VGG-16
occupies 408MB alone, which is 77.3% of total model size.
Large fully-connected layers have been removed in other fully
convolutional networks such as ResNet [10], or Inception
family [34].

Knowledge distillation introduced in [11] is another direction
for compressing NNs. The main idea is to distill information

from a pre-trained, large model into a smaller model. For
instance, it was shown that with knowledge distillation it is
possible to reduce model size by a factor of 3.6 with an
accuracy of 91.61% on Cifar-10 [30].

Another fundamental approach has been to architect models
which are, by design, both small and hardware-efficient.
An initial effort here was SqueezeNet [15] which could
achieve AlexNet level accuracy with 50⇥ smaller footprint
through network design, and additional 10⇥ reduction through
quantization [8], resulting in a NN with 500⇥ smaller memory
footprint. Other notable works here are [13], [31], [41], [21],
[3], where more accurate networks are presented. Another work
here is SqueezeNext [7], where a similar approach is taken,
but with co-design of both hardware architecture along with a
compact NN model.

Quantization [1], [4], [28], [42], [43], [2], [40] is another
orthogonal approach for model compression, where lower bit
representation are used instead of redesigning the NN. One
of the major benefits of quantization is that it increases a
NN’s arithmetic intensity (which is the ratio of FLOPs to
memory accesses). This is particularly helpful for layers that
are memory bound and have low arithmetic intensity. After
quantization, the volume of memory accesses reduces, which
can alleviate/remove the memory bottleneck.

However, directly quantizing NNs to ultra low precision may
cause significant accuracy degradation.

One possibility to address this is to use Mixed-Precision
quantization (MP) [36], [44]. A second possibility, Multi-Stage
Quantization (MSQ), is proposed by [42], [6]. MP and MSQ
can improve the accuracy of quantized NNs, but face an
exponentially large search space. This is a major problem that
has not been addressed in existing literature for quantization.
Applying existing methods require often ad-hoc rules to choose
precision of different layers which are problem/model specific
and do not generalize. The goal of our work here is to address
this challenge using second-order information.

III. METHODOLOGY

Assume that the NN is partitioned into b blocks de-
noted by {B1, B2 . . . , Bb}, with learnable parameters

QAP (B. Hawks et al.) 

 

HAWQ

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2011.10680
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full
https://arxiv.org/abs/1905.03696


Q                  ? Quantized ONNX (QONNX), J. Mitrevski et. al 

hls4ml collaborate with Xilinx Research Labs to develop QOONX 
• Introducing ‘Quant’ node to ONNX graph 
• Brevitas (PyTorch) and QKeras (Keras) can export QONNX (HAWQ 

export in progress): then hls4ml and FINN can import QONNX 

https://indico.cern.ch/event/1156222/contributions/5062813/attachments/2521120/4335054/QONNX%20FastML.pdf


NA62: Measuring BR( ) = O(10-11) 
• FPGA trigger 800 MHz→1 MHz 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

K+ → π+νν̄

ATLAS Liquid Argon Calorimeter (R&D) 
• RNN for real-time energy reconstruction 
• ~200 ns on Intel Stratix-10 FPGA 

 

hls4ml  in  o ther  CERN exper iments

CHEP 2019, P. Vicini 

DOI:10.1007/s41781-021-00066-y 

ATLAS small wheel muon segment finding 
and reconstruction (R&D) 

• Regression of muon position and angle 
• 400 ns budget 

R. Teixeira de Lima, R Rojas Caballero et al.

https://indico.cern.ch/event/773049/contributions/3474328/attachments/1939688/3216506/L0TP_CHEP2019.pdf
https://link.springer.com/article/10.1007/s41781-021-00066-y


 
 
 
 
 
 
 

→Knowledge Dis t i l la t ion

Can we have the best of both worlds? 

Tra in In ference



Dog

Cat



Cat

is cat

is dog



is cat = 0.89

is dog = 0.11

Predicted labels

Teacher 
(already trained)

Cat



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Cat



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Train student to learn both 
true and predicted (teacher) labels! 

Student learns subtle learned features from teacher! 

Distilled  
knowledge

Ltotal = β × LDistillation + α × Lstudent

Cat



FPGAs as  acce lera tors

C. Beteta, I. Bezshyiko, N. Serra

Particle flow 

17 July, 2014 CMS induction ,  T. Camporesi 32 

DAQ CO-PROCESSING



Figure 1: LHCb upgrade dataflow focusing on the real-time aspects.

Figure 2: LHCb upgrade dataflow focusing on the real-time aspects, in widescreen view.
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H igh  throughput  GPU t r iggers

ML already used in LHCb GPU trigger for 
particle ID,  
track reconstruction,  
trigger decisions … more underway!



High throughput  GPU t r iggers

Figure 1: LHCb upgrade dataflow focusing on the real-time aspects.

Figure 2: LHCb upgrade dataflow focusing on the real-time aspects, in widescreen view.
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Detector read-out 
O(500) FPGAs

40 MHz pp collisions

350 GPUs  
5 TB/s @ 30 MHz 

of raw data
O(10) PB 

buffer

CPU-based 
Full reco & 

trigger

LHCb HLT1 trigger
The goal of HLT1 
• Be able to intake the entirety of the LHCb raw data (5 TB/s) at 30 MHz

• Perform partial event reconstruction & coarse selection of broad LHCb 

physics cases

• Reduce the input rate by a factor of 30 (~1 MHz)

• 30 MHz benchmark can be achieved with O(200) GPUs (max number EB 

can host is 500)

• ~ 350 GPUs now installed -> Additional functionalities are being explored

• Throughput scales well with theoretical TFLOPs of GPU card

11

LHCb-FIGURE-2020-014 
First complete high-throughput GPU 

trigger for a HEP experiment!Allen: a GPU HLT1 trigger platform

170 KHz

[Comput Softw Big Sci 4, 7 (2020)]

A. C
erri - U

niversity of Sussex
LHCb-FIGURE-2023-009

M. Fontana 

https://indico.cern.ch/event/1198609/contributions/5366558/attachments/2651469/4590878/Trigger_MFontana_LHCP23.pdf


CMS Offline Computing Results 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


CMS Offline Computing Results 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Experimental particle physics workflow

This is what happens in the experiment

This is what we want t know
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How to represent the data?
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Diffusion models basics
arxiv:2006.11239

Model

Gaussian noise

, y)
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Di ffus ion  models



Dall-e 2
arxiv:2204.06125ViT

Transformer
Diffusion
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Dall-e 2
arxiv:2204.06125ViT

Transformer
Diffusion
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https://arxiv.org/pdf/2303.05376.pdf
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