

LhARA FFA- beam physics update

J. Pasternak

10/01/2024, FETS FFA/LhARA joint collaboration workshop, RAL

Outline

- LhARA FFA baseline
- Variable energy FFA
- Lessons from RACCAM
- LhARA double spiral FFA candidate
- New injection line
- Conclusions

LhARA Ring Tracking

- Performed using proven stepwise tracking code (FixField)
- It takes into account fringe fields and non-linear field components
- Results show dynamical acceptances are large
- No space charge effects included yet

FFA Ring with subsystems

Parameter	unit value	
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees 48.7	
thickness	cm 1	
full gap	cm 3	
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	1.12
magnetic length	m	0.9
deflection angle	degrees	34.38
thickness	cm	1
full gap	cm	2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	ns	320
flat top duration	ns	25
full gap	cm	3
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	T 0.05	
deflection angle	mrad 19.3	
rise time	ns 110	
flat top duration	ns	40
full gap	cm	2

•

work)

Energy Variability using Laser Accelerated Ions

Some RF scenarios for various modes

- Main proton mode: h=1, V~0.5 kV, (4 kV to accept ±2% energy spread at injection, 15-127.4MeV, 2.89 6.48 MHz
- Min energy proton mode: h=2, 1.68-15 MeV, 1.95-4.83 MHz
- Main carbon mode: h=1, 3.77-33.4MeV/u, 1.46 3.55 MHz
- Min energy carbon mode: h=4, 0.42-3.77 MeV, 1.95-4.83 MHz

Some parameters

- Total proton bunch length in in-vitro station at Stage I 5.3ns (for comparison)
- Bunching factor at injection to FFA 0.023
- Total proton bunch length at injection to FFA 8.1ns
- Total relative energy spread at injection to FFA $\pm 2\%$
- Incoherent space charge tune shift at injection to FFA ~-0.8
- Beam intensity for proton beam ~10⁹
- Proton bunch length at extraction from FFA 41.5ns
- Beam intensity for carbon beam ~10⁹ /12
- Carbon bunch length at extraction from FFA 75.2ns

Challenges of variable energy opeartion

- Flexible RF system -> MA cavities
 - Ferrite loaded cavities may be an option as well with lower power consumption?
- Flexible power supplies
 - Should be ok?
- Stable tunes for all operating modes
 - It is already challenging to achieve stable tunes for a single mode, hmm...

What did we learn from RACCAM?

- Singlet scaling spiral FFA magnet
- Gap-shaping
- Variable chamfer
- It can be manufactured!

Yoke shape		Parallelepiped
Lamination thickness	(mm)	1.5
Gap shape		$\propto 1/r^{\kappa}, \ \kappa \approx 5.2$
Gap at $3.46\mathrm{m}$	(cm)	4
Gap at $2.794\mathrm{m}$	(cm)	11.6
Overall dimension $\mathbf{L}\times~\mathbf{W}\times~\mathbf{H}$	(mm)	$2913\times579\times1230$
Good field region	(m)	$2.9 \le r \le 3.3$
Total weight of magnet	(t)	18
PS voltage	(V)	159
PS current $(180 \mathrm{MeV} \mathrm{operation})$	(A)	200
Total water flow	(litres/min)	12.13
Water temperature, in/out	$(^{\circ}C)$	24/44

F. Meot, BNL-211536-2019-NEWS

RACCAM tune behaviour at different field levels

- Horizontal tune is relatively flat and changing only at the highest current
- Effect on the vertical tune is much stronger
 - Effect on the shape and the mean value
 - Effect is clearly visible at the high current and tend to be very small below 80% (is this approximately where LhARA FFA could be?)

F. Meot, BNL-211536-2019-NEWS

For similar discussion on the field level for flat gap, distributed coils magnet, see Enzo Kuo's talk

Issues

- RACCAM type machine sits in the designed working point forever
 - What if we want to change the tune?
 - What if we need the specific horizontal tune for the slow extraction?
 - Wha if we need to move away from the resonance?
- Solution could be the singlet with distributed conductors (FETS FFA-like)
 - It should be possible to scale the magnetic field
 - This scaling cannot be as simple as in the case of the gap-shaping magnet
 - It should be possible to change the working point (both tunes together in correlation)
 - What if the full variability of both tunes independently is needed?
 - For example, if the effect of scaling on the vertical tune is very strong

J. Pasternak, IC London

s[m]

DA studies in double spiral candidate (Ff, nominal tunes)

Tracking studies show sufficient DAs in both transverse planes

B field in double spiral candidate (Ff, nominal tunes)

Ff vs Fd configurations (nominal tunes vs "high intensity" tunes)

Optics and DA studies in double spiral candidate (Fd, "high intensity" tunes)

- "High intensity" tunes: (Q_H, Q_V)=(2.22,2.19) provide similar betatron functions
- This working point is limited to low energy
- DAs are larger than in the nominal working point
- We could perform space charge experiments
 - Beam is space charge dominated at injection due to the short bunch length from the laser source

New injection line for the baseline

Conclusions

- LhARA at Stage 2 requires a variable energy FFA
- The cost effective, single spiral scaling FFA chosen for the baseline shows a good performance in tracking studies
 - New injection line has been recently designed
- The magnet design for the singlet may be realised by
 - Gap-shaping solution (RACCAM-like) with fields below saturation level with a frozen working point
 - Distributed conductors (using technique similar to FETS- FFA)
 - Allows to vary tunes in correlation
- Alternative double spiral scaling lattice was proposed
 - Allows for the independent tuning of both tunes over a wide range
 - Allows to work with a nominal tune (2.83, 1.22) in the Ff configuration
 - Allows to obtain working point with both tunes close to each other (2.22,2.19) at low injection energy (3 MeV) in Fd configuration
 - May be suitable for space charge experiments