### Dark Matter Searches at the LHC

### James Frost (james.frost@physics.ox.ac.uk)

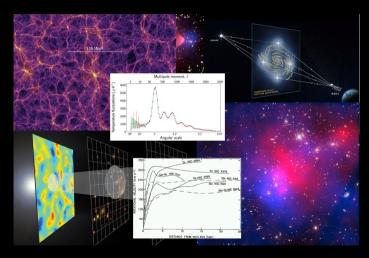


Wednesday 8th November 2023

| James Frost | (Oxford) |
|-------------|----------|
|-------------|----------|

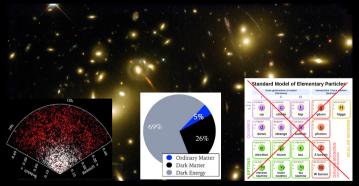
**RAL Seminar** 

Dac


#### Dark Matter and Collider Searches

- Monojet  $Jet(s) + E_T^{miss}$
- Oijet/dilepton searches
- Invisible Higgs decays
- Extended Higgs Sectors (2hdm+a)
- Oark Sectors, semi-visible jets and LLPs

Э


### Why search for Dark matter?

- Galactic rotation curves
- Dwarf galaxies
- Large scale structure
- Gravitational lensing
- Cluster collisions
- CMB + Baryogenesis



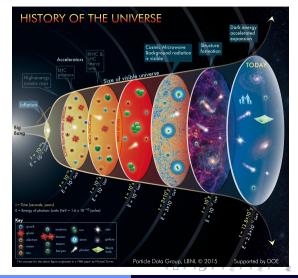
### How to search for Dark matter?

- Gravitationally interacting
- Dark
- Cosmologically stable
- 5x as much as SM
- Properties inconsistent with any SM particle



# Models of dark matter

- Dark matter must have very small effective SM couplings
  - Directly to SM particles?
  - Indirectly through BSM particles?
- Incorporate astrophysical knowledge
  - Relic density
  - Mechanism (freeze out, freeze-in)
  - DM nature (scalar, Dirac fermion, etc...)
- Candidates: WIMPs, dark γ axion/axion-like particles, dark sectors



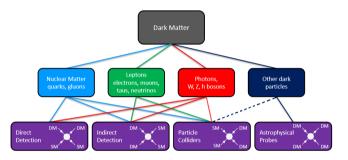

RAL Seminar

イロト イポト イヨト イヨ

# Models of dark matter

- Dark matter must have very small effective SM couplings
  - Directly to SM particles?
  - Indirectly through BSM particles?
- Incorporate astrophysical knowledge
  - Relic density
  - Mechanism (freeze out, freeze-in)
  - DM nature (scalar, Dirac fermion, etc...)
- Candidates: WIMPs, dark  $\gamma$  axion/axion-like particles, dark sectors




James Frost (Oxford)

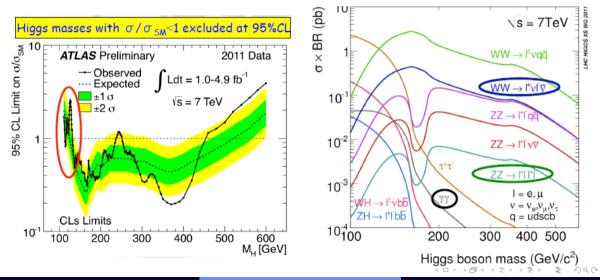
Sar

# Complementarity, signatures

#### **Assumptions**

- DM interacts non-gravitationally
- Has some effective hadron coupling
- Complementarity
- Direct/indirect detection, colliders
- For what collider signatures to search?




#### (adapted from 1305.1605)

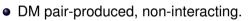


Dac

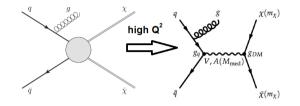
化口压 化塑料 化医压化医压

### Intermezzo - Finding new particles is hard!



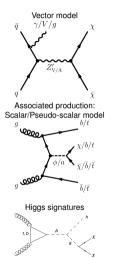

James Frost (Oxford)

**RAL** Seminar


Wednesday 8th November 2023 7 / 77

# Anatomy of a collider DM signature

- LHC high-energy probe
- Allows characterisation of DM interaction
- Use/need model to guide phenomenology




- Proton remnant & DM alone not triggered.
- Need to tag DM production event via visible radiation (ISR, assoc. production)  $\rightarrow E_T^{miss}$
- Resolving the DM interaction 'mediator' particle complementary approach, resonance signatures.
- Use simplified models (with mediator), and specific complete models to explore.
- Signature-driven approach explore all DM signatures



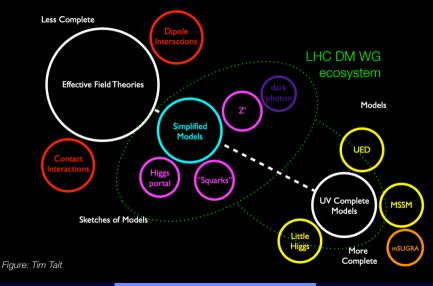
### Introduction to Collider DM searches - Summary

- Any WIMP DM produced at collider experiments will interact weakly and pass invisibly through detectors.
- Inferred through 'Missing  $E_T$ ' ( $E_T^{miss}$ ) when event does not balance in plane transverse to beam.
- Visible radiation (photons, jets, vector bosons) from ISR or associated production can tag DM pair production.
- Consequently, collider searches focus on production of a SM particle(s) (X) with large E<sub>T</sub><sup>miss</sup>.
- Dark Matter mediators need searches for new resonances. Complementary approaches.
- LHC can investigate and characterise the SM-DM interaction. Use simplified models (with mediator), and specific complete models to explore in LHC Run-2.



nan

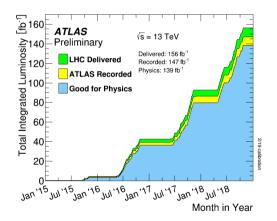
#### Necessary


- Compelling dark matter candidate, ability to satisfy relic density
- Tractable no. of parameters
- Evades existing constraints
- Important, generic signatures

### Desirable

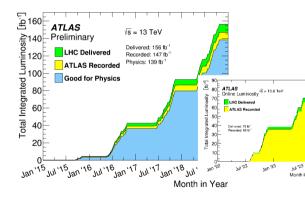
- Interesting phenomenology
- Wide range of possible signatures (illustrate breadth of programme)
- Synergies: e.g.
  - invisible vs. mediator resonance
  - prompt vs LLP vs invisible
  - interplay with (in)direct detection

Э


### Models



James Frost (Oxford)

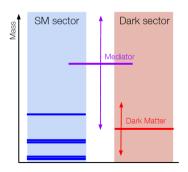

## ATLAS Datasets and Luminosity

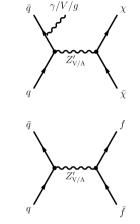
- LHC Run-2 ended in late 2018.
- An unprecendentedly sensitive dataset.
- Many results already published, and more being released regularly.
- But just the beginning...
- LHC Run-3 at 13.6 TeV is progressing well since last summer.
  - Greater luminosity and greater collision energy
  - More than double our data (~ 400 fb<sup>-1</sup>) by 2025.



## ATLAS Datasets and Luminosity

- LHC Run-2 ended in late 2018.
- An unprecendentedly sensitive dataset.
- Many results already published, and more being released regularly.
- But just the beginning...
- LHC Run-3 at 13.6 TeV is progressing well since last summer.
  - Greater luminosity and greater collision energy
  - ► More than double our data (~ 400 fb<sup>-1</sup>) by 2025.





- Dark Matter and Collider Searches
- Monojet Jet(s)+ $E_T^{miss}$
- Oijet/dilepton searches
- Invisible Higgs decays
- Extended Higgs Sectors (2hdm+a)
- Oark Sectors, semi-visible jets and LLPs

3 . 3

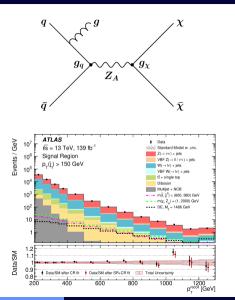
# S-channel Mediator Simplified Models

- Introduce mediator, talks to DM and SM sectors.
- Two complementary approaches:
  - Look for DM mono-X signature
  - Look for mediator resonance search





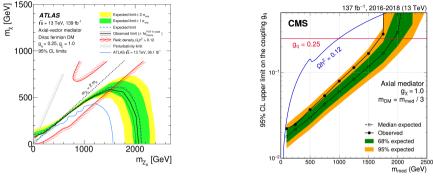
### LHCDMWG White Paper (1507.00966)


 Relic density: use to guide searches (simplified modeLincomplete) => =

Sar

# Monojet Search - $Jet(s) + E_T^{miss}$

2102.10874


- Very general DM search!
- Selections:
  - Energetic jet pT > 150 GeV
  - ► *E<sub>T</sub><sup>miss</sup>*> 200 GeV
  - Up to 3 extra jets
  - Search for excess in  $E_T^{miss}$
- Shape fit in 13  $E_T^{miss}$  bins  $(p_T^{recoil})$
- Backgrounds: Z+jets, W+jets, Diboson,  $t\bar{t}$
- Estimated in 1- and 2-lepton CRs
- High precision calculation (paper) of Z+jets/W+jets.
- O(1-2%) uncertainty on predicted background.



James Frost (Oxford)

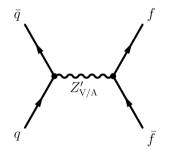
Sac

# Monojet Search - $Jet(s) + E_T^{miss}$ - Model Interpretations



#### 2102.10874

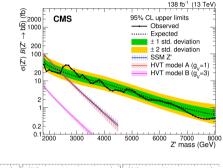



#### Many interpretations

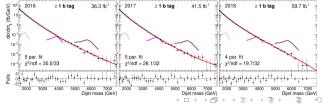
- Simplified Models
  - ► Fix coupling, exclude m<sub>DM</sub> m<sub>med</sub>; fix ratio, exclude coupling
- T-channel models
- Generic sensitivity e.g. SUSY, leptoquarks, extra dimensions

James Frost (Oxford)

San


- Dark Matter and Collider Searches
- Monojet Jet(s)+E<sub>T</sub><sup>miss</sup>
- Oijet/dilepton searches
- Invisible Higgs decays
- Extended Higgs Sectors (2hdm+a)
- Dark Sectors, semi-visible jets and LLPs

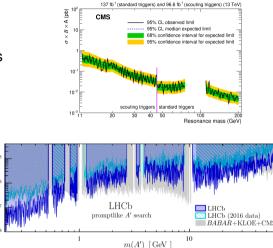



Dac

### Mediator Resonance Searches - Dijets/dileptons

- General signature, dijet/dilepton resonances.
- Signal peak on falling background
- Dileptons if mediator couples
- Many techniques for low mass.




- Select 2+ jets, with b-tags
- Reduce QCD bkg:  $|\Delta \eta| < 1.1$
- Search in *m<sub>jj</sub>* spectrum
- 2205.01835

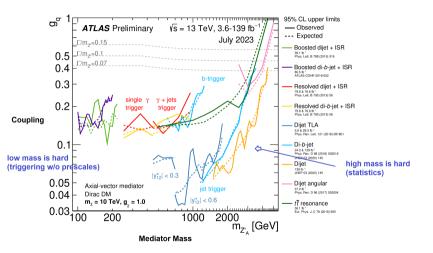


### Low-mass di-lepton searches

- Search for dilepton resonances
- Data-scouting triggers extend low-mass reach.
- Phys. Rev. Lett. 124(2020)131802

- $\bullet\,$  Mediator decay to  $\mu^+\mu^-$
- Drell-Yan main background
- Complements high-mass ATLAS & CMS
- Phys. Rev. Lett. 124, 041801



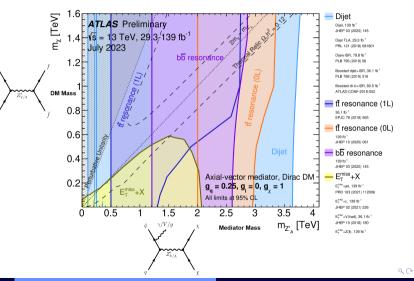

10

10 പ

何トイラトイラ

### Putting it all together - Simplified Models I

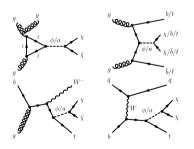
- ATLAS DM Summaries
- How do our mediator resonance searches do?



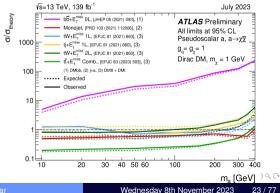

Dac

### Putting it all together - Simplified Models II

• ATLAS DM Summaries


 Illustrate complementarity between mediator and invisible searches.

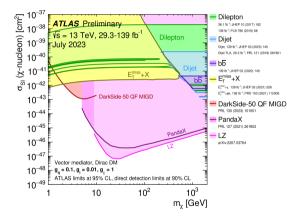



# Spin-0 Simplified Models

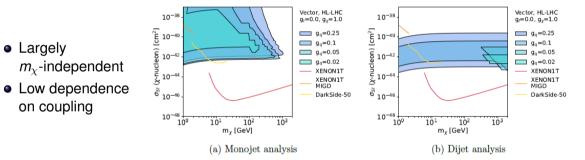
- Consider scalar/pseudo-scalar mediators
- Yukawa-type couplings  $\rightarrow$  heavy quark (b/t)-associated searches dominate.

**Relevant Signatures:** 




- $tt + E_T^{miss}$  combination
- $tW + E_T^{miss}$
- bb+ $E_T^{miss}$
- monojet



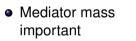

# Comparisons with Detection Experiments

#### • Key message: complementarity

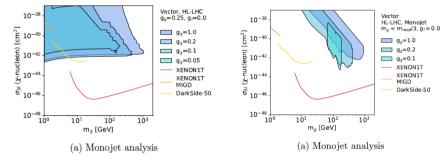
- LHCDMWG white paper on presentation (1603.04156)
- Assumptions: WIMP, local DM density, interaction type (model-dependence).
- Colliders insensitive to DM mass (all is  $E_T^{miss}$ ), mediator more important.
- Ongoing work to illustrate variations (2203.12035, 2206.03456)



### Comparisons with Detection Experiments II

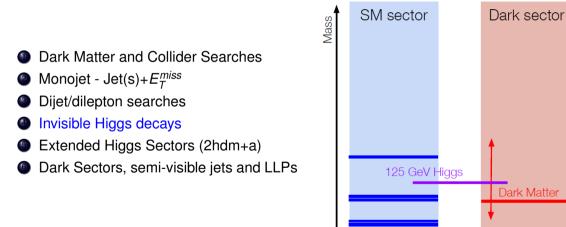



Largely


э

Dac

## Comparisons with Detection Experiments III

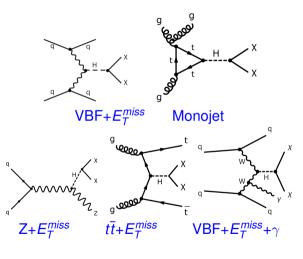



- Connect to light DM experiments
- LHC unique for larger  $m_{\chi}/m_{med}$

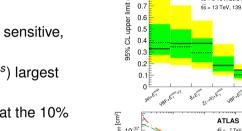


Dac

Þ



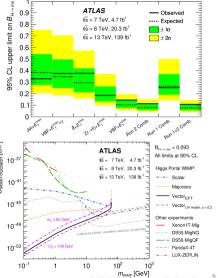

Dac


## **Invisible Higgs Searches**

# PLB 842 137963

- 'Vanilla' Higgs portal
- Higgs boson mediates the interactions with DM, decays to DM
- 'Invisible Higgs' anomalous BR (H $\rightarrow$  inv = 0.12% in SM).
- Signatures:  $E_T^{miss}$ + X, each Higgs production mode.
- Sensitivity led by VBF+ $E_T^{miss}$  and Mono-Z signatures.

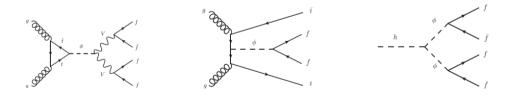



#### 0.5 04

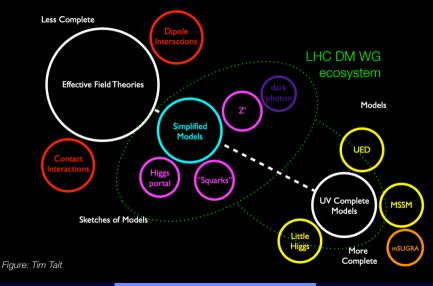


# Invisible Higgs Searches - Combined

- Recent combination of 139 fb<sup>-1</sup> results. together with Run-1 analysis.
- VBF+ $E_T^{miss}$  and Z+ $E_T^{miss}$  most sensitive, Run-1 adds 4%.
- W/Z+jet modelling (VBF+ $E_T^{miss}$ ) largest uncertainty.
- Already probing BR( $H \rightarrow Inv$ ) at the 10% level!


| Analysis      | Best fit $\mathcal{B}_{H \to inv}$ | Observed 95% U.L. | Expected 95% U.L.         |
|---------------|------------------------------------|-------------------|---------------------------|
| Run 2 Comb.   | $0.04\pm0.04$                      | 0.113             | $0.080^{+0.031}_{-0.022}$ |
| Run 1 Comb.   | $-0.02^{+0.14}_{-0.13}$            | 0.252             | $0.265^{+0.105}_{-0.074}$ |
| Run 1+2 Comb. | $0.04\pm0.04$                      | 0.107             | $0.077^{+0.030}_{-0.022}$ |




PLB 842 137963

### Aside: Dark Higgs models

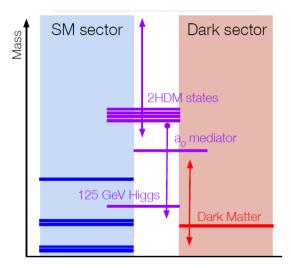
- Good signature for models in which the Higgs boson properties are modified.
- e.g. models where a dark Higgs boson  $\phi$  generates  $m_{\chi}$  and mixes with *h*.
- SM-like dark Higgs production and decay,  $\phi \rightarrow hh$  or  $h \rightarrow \phi \phi$  are allowed.
- Constraints from precision Higgs,  $h \rightarrow inv$ , di-Higgs/diboson resonances
- If DM heavy, resonant  $h 
  ightarrow \phi \phi 
  ightarrow 4f$  searches relevant



### Models



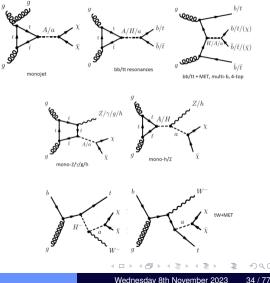
James Frost (Oxford)


- Dark Matter and Collider Searches
- Monojet Jet(s)+E<sub>T</sub><sup>miss</sup>
- Oijet/dilepton searches
- Invisible Higgs decays
- Extended Higgs Sectors (2hdm+a)
- Oark Sectors, semi-visible jets and LLPs

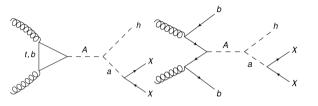
1

Э

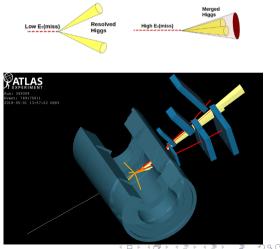
# Extended Higgs sectors - 2hdm+a

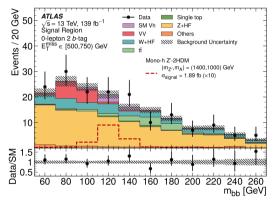

- Higgs sector unique and unexplored
- Natural portal to dark matter
- LHC DM WG benchmark white paper (1810.09420)
- Postulate two-Higgs doublet (ext. Higgs sector)
- Pseudoscalar (*a*) portal to DM. Reduced constraint from DD.
- For heavier *m<sub>DM</sub>*, target scalar sector mediators.
- Interesting physics from wide range of signatures and A-a mixing.



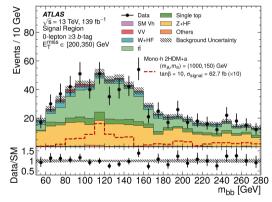

Sac

## 2HDM+a - Overview


- UV complete model: pseudoscalar mediator with Extended Higgs sector.
- Rich phenomenology with great signature interplay.
- Complex model LHC DM WG white paper defines several benchmarks.
- Incorporates analyses from across ATLAS search programme.
- New addition single top (tW/tq) +*E*<sup>miss</sup> search (2211.13138).




# 2HDM+a Analyses - I. Mono-Higgs



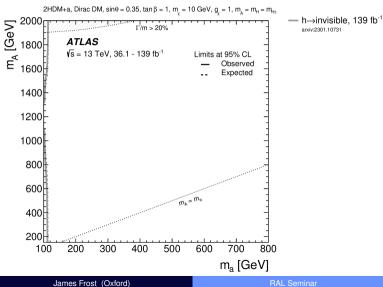

- Higgs boson recoiling against E<sub>T</sub><sup>miss</sup>
- Sensitive to DM lighter than *a*, reasonable *A*-*a* mass splitting
- 2- and 3-b signal regions  $\rightarrow$  sensitive to gg- and bb-induced production.





2b, merged channel Also:  $h(\rightarrow \tau \tau) + E_T^{miss}$ ,  $h(\rightarrow \gamma \gamma) + E_T^{miss}$ 



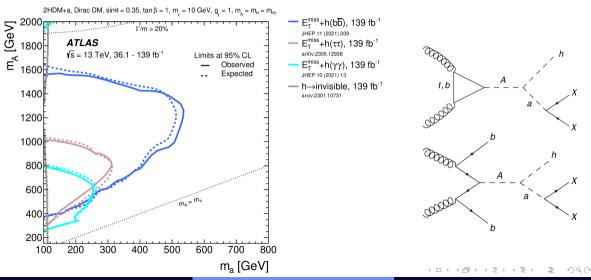

3b, resolved channel

200

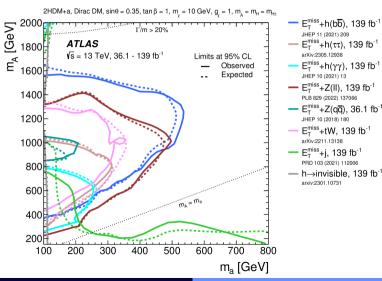
- Complete model several parameters.
- Various benchmarks defined to illustrate/explore phenomenology
- Fix some parameters to satisfy theory constraints.
- Synergy of invisible/visible mediator signatures.

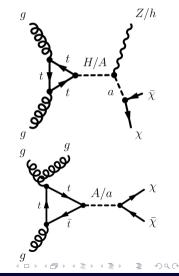
tan  $\beta$  - impacts gg- vs bb-production.  $m_A = m_H = m_{H^{\pm}}$  - avoid precision EW constraints. sin  $\theta$  - degree of *a*-*A* mixing.  $m_{\chi}$  - little direct experimental sensitivity, controls e.g *a* BRs.  $g_{\chi}$  - little mono-X sensitivity

= nan




10

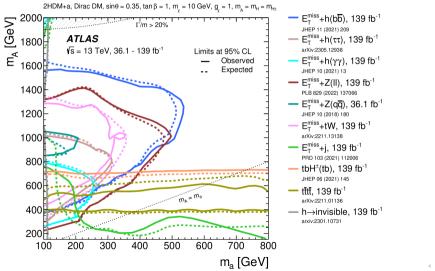

Ξ.

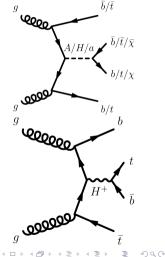

Dac

Þ

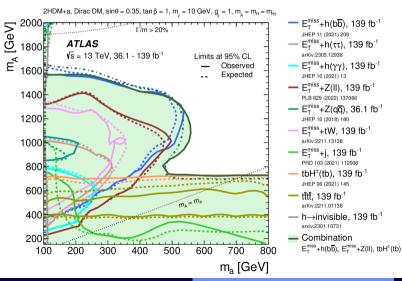


James Frost (Oxford)




James Frost (Oxford)


RAL Seminar

Wednesday 8th November 2023 40 / 77



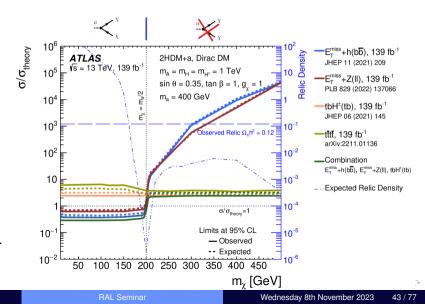


James Frost (Oxford)



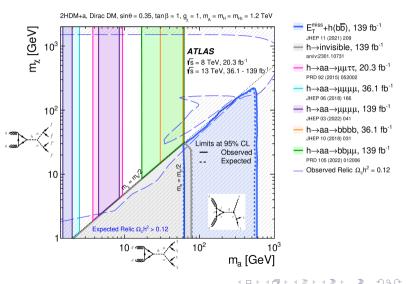
James Frost (Oxford)

Dac


### 2HDM+a - Sensitivity to DM mass

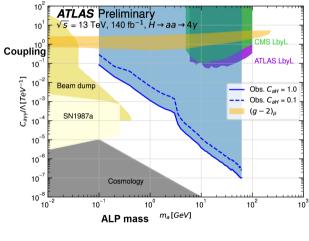
### 2306.00641




- Insensitivity to DM mass allows R.D. satisfaction.
- But can vary the DM mass to show dependence.
- Heavy Higgs/Mediator searches constrain higher m<sub>χ</sub>.

James Frost (Oxford)




# 2HDM+a Light Pseudoscalars - What if *a* is light? 2306.00641

- Complementary with lower-mass ALP searches for pseudoscalars (2202.12631).
- Light resonant searches powerful when *a* cannot decay to DM.
- Invisible signatures kick in for lower DM masses.



## Aside: Axion-like particle (ALP) searches

- ALP searches for light pseudo-scalars (from U(1) SSB).
- Several final states, depending upon mass.
- Lowest masses probed by  ${\it a} 
  ightarrow \gamma \gamma$
- Non-resonant diboson production also relevant at LHC.



#### ATLAS-CONF-2023-040

James Frost (Oxford)

**RAL** Seminar

Dac

- Dark Matter and Collider Searches
- Monojet  $Jet(s) + E_T^{miss}$
- Oijet/dilepton searches
- Invisible Higgs decays
- Extended Higgs Sectors (2hdm+a)
- Oark Sectors, semi-visible jets and LLPs

1

Э

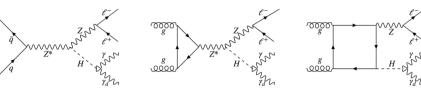
#### **Dark Sectors**

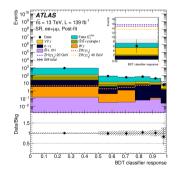
- Have some hidden sector which (usually) includes a DM candidate
- Postulate a portal that communicates between SM and dark sectors, i.e. have some dark sector states decay back to SM with small coupling.
- Common in very weakly/feebly interacting models
- Dark sector need not be thermal freeze-in via heavy particle decays.

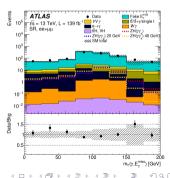
| Portal                       |  |
|------------------------------|--|
| Dark Photon, $A_{\mu}$       |  |
| Dark Higgs, $S$              |  |
| Axion, $a$                   |  |
| Sterile Neutrino, ${\cal N}$ |  |
| PBC Report                   |  |

#### **Dark Photons**

Massive new dark gauge boson  $\gamma_D$  from U(1) extension Mixes with SM photon ( $\epsilon$  parameter) Strategies for prompt and LLP signatures.

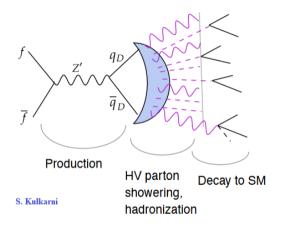

-


周 ト オ ヨ ト オ ヨ ト


### Dark Photon Searches - ZH

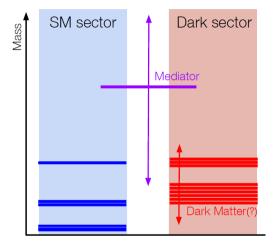
#### 2212.09649

- Model: Higgs boson couples via dark sector
- Search for exotic decay
- Clean final state
- $Z \to \ell \ell$
- Cut on  $m_{\ell\ell}$ ,  $m_{\ell\ell\gamma}$ ,  $E_T^{miss}$
- Train BDT and fit discriminant
- CRs for  $e \rightarrow \gamma$ ,  $VV\gamma$
- $\mathcal{B}(h 
  ightarrow \gamma \gamma_D) <$  2.3 % at 95% CL.
- cf. VBF+MET+ $\gamma$  Paper: 1.8 %



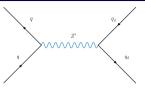






## Strongly-interacting dark sectors - dark QCD/showers

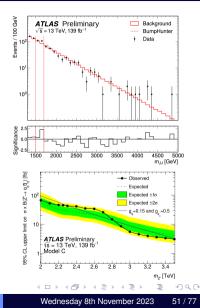
- What if dark sector confined?
- Simple mediator, but complex dark sector/matter phenomena.
- Generate dark quarks, hadronise into dark hadrons
- Dark hadrons: stable  $\rightarrow E_T^{miss}$ , unstable  $\rightarrow$  decay to SM. Invisible fraction  $r_{inv}$
- Unusual hadronic signatures.
- Prompt dark hadron decay  $\rightarrow$ **Semi-visible jet signature**: SM jet aligned with  $E_T^{miss}$ .
- Unstable dark hadrons dark jets; dark meson search




## Strongly-interacting dark sectors - dark QCD/showers

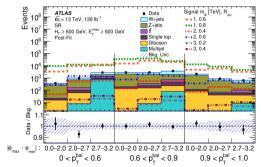
- What if dark sector confined?
- Simple mediator, but complex dark sector/matter phenomena.
- Generate dark quarks, hadronise into dark hadrons
- Dark hadrons: stable  $\rightarrow E_T^{miss}$ , unstable  $\rightarrow$  decay to SM. Invisible fraction  $R_{inv}$
- Unusual hadronic signatures.
- Prompt dark hadron decay  $\rightarrow$ **Semi-visible jet signature**: SM jet aligned with  $E_T^{miss}$ .
- Unstable dark hadrons dark jets; dark meson search

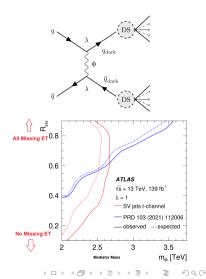



### Dark jets

# ATLAS-CONF-2023-047



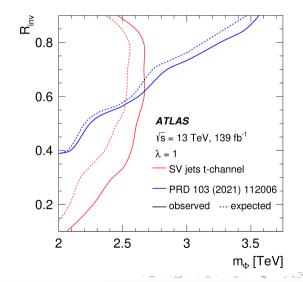

- Recent first CONF search for dark jet resonance.
- Selects wide resonance signal through large-R jets of high track multiplicity.
- Bump hunt above a background shape CR template.

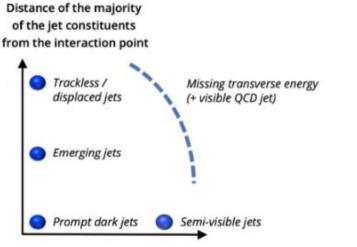

| Model | $n_f$ | $\Lambda_d$<br>(GeV) | $\widetilde{m}_{q'}$<br>(GeV) | $m_{\pi_d}$<br>(GeV) | $\begin{array}{c} m_{ ho_d} \\ ({ m GeV}) \end{array}$ | $\pi_d$ decay mode                                                       |
|-------|-------|----------------------|-------------------------------|----------------------|--------------------------------------------------------|--------------------------------------------------------------------------|
| Α     | 2     | 15                   | 20                            | 10                   | 50                                                     | $\pi_d \rightarrow c\bar{c}$                                             |
| В     | 6     | 2                    | 2                             | 2                    | 4.67                                                   | $\pi_d \rightarrow s\bar{s}$                                             |
| С     | 2     | 15                   | 20                            | 10                   | 50                                                     | $\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 4.0 \text{ GeV}$ |
| D     | 6     | 2                    | 2                             | 2                    | 4.67                                                   | $\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 0.7 \text{ GeV}$ |



## Semi-visible Jets - t-channel

- High  $E_T^{miss}$ , two high- $p_T$  jets.
- Discriminating variables:  $p_T^{bal}$ ,  $p_T$  jet balance,  $|\Delta \phi|$ .
- Use 1-lepton, 1-bjet and 2-lepton CRs.
- SR requires  $E_T^{miss}$ >600 GeV and  $H_T$ >600 GeV.
- Fit to 9  $p_T^{bal}$ - $|\Delta \phi|$  ranges.




2305.18037

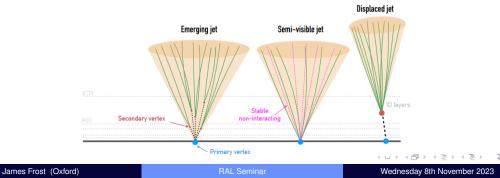
# Semi-visible jets - thoughts

- Monojet complementarity shown.
   Dijet/darkjet to constraint low R<sub>inv</sub>.
- S-channel also underway (CMS & ATLAS).
- Need to ensure we cover full signature range.
- More realistic dark-QCD model, or phenomenological '*E<sub>T</sub><sup>miss</sup>*-fraction' approach.
- Which variables/modelling are robust/trustable, theoretically?
- Discussions around an LHCDMWG white paper on concrete benchmarks.





- Dark meson states with • lifetimes?
- Generates long-lived signatures.
- Emergent or displaced jets (w/  $E_T^{miss}$ )

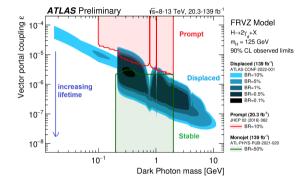

#### Fraction of invisible particles

- TE

San

# Emerging and Displaced Jets

- For dark hadron lifetimes O(10<sup>-3</sup>–1), expect multiple displace vertices in a jet  $\rightarrow$  emerging jet
- Greater lifetimes yield a displaced jet, with jet constituents pointing to a common displaced/secondary vertex.
- Important to cover the signature space, not leave holes between topologies.
- Theoretical modelling questions also pertinent.




San

55 / 77

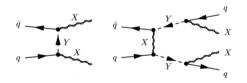
# Summaries for prompt & LL signatures

- LLP, or phase spaces with them, are ubiquitous in many DM models.
- Important complementarity with prompt searches. (Cf. visible/invisible, low-/high-mass).
- Also the very long-lived extreme e.g. monojet, h→Inv (for e.g. h→ss).



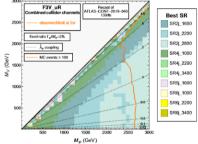
• Encountered for h - > aa, dark photon models. Will appear for darkjets, ALPs, 2hdm+a/dark higgs.

10


# **Run-2 Summary**

- Wide ranging and successful collider search programme for dark matter.
- Initially focussed on WIMP hypotheses still many options.
- Now also many results on other DM options - dark photons, ALPs, dark sectors.
- Often sophisticated analyses precision bkgs, new/difficult signatures, broad combinations/summaries.
- Also combinations and legacy papers some Run-2 results to come.
- Have focussed on ATLAS/CMS, but LHCb, FASER results coming in Run-3.




# Ongoing Efforts - T-channel models

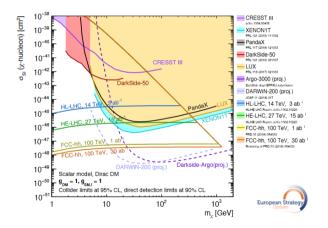
- T-channel process often exists in DM models.
- Often same final state as e.g. SUSY searches
- e.g. disquark/monojet signatures



- LHCDMWG-inspired UFO with range of t-channel models
- Extend SM with DM (X) and mediator (Y)






2010.07559 (using strong 0L) White paper studies ongoing, incl. leptophilic and long-lived models.

James Frost (Oxford)

**RAL** Seminar

# Outlook to Run-3 and HL-LHC

- Community Review
- LHCDMWG Workshop: Roadmap of Run-3 DM models, 13-17 May 2024
- Aims:
  - Review and update existing benchmarks in light of Run-2 results.
  - Ensure full signature coverage in Run-3 and beyond
- Huge sensitivity increase from dedicated triggers and improved techniques for difficult signatures (incl. LLP).



### Conclusions

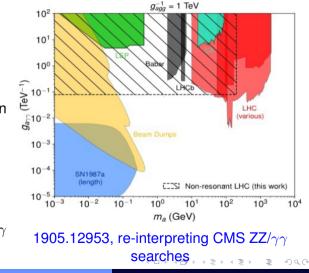
- Colliders are an interesting place to look for dark matter.
- Some unique advantages (high energy, probe interaction, DM candidate range).
- Some challenges (model guide, insensitivity to DM itself).
- Run-2 dataset powerful, huge broadening of programme.
- Run-3 and beyond: vital to continue to look widely, to ensure no missing opportunities.
- Investigate any hints from other sources (DD, lightDM, forward exp., LLP exp.).
- Still only 5-7% of the final HL-LHC dataset recorded, much yet unexplored!

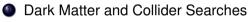
James Frost (Oxford)



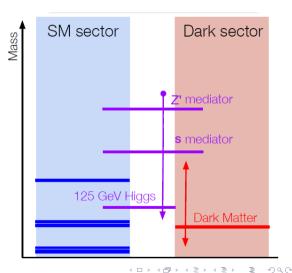
# Backup

James Frost (Oxford)


æ

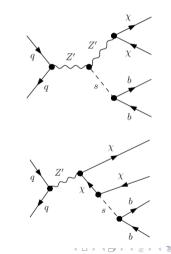

590

・ロト ・回 ト ・ヨト ・ヨト


## Lighter DM - Non-resonant ALP searches

- Recent interest in non-resonant and loop-induced ALP searches at LHC.
- e.g. high mass tails of diboson production (paper)
- Also VBS *VV* of interest (indep. of gluon coupling).
- Electroweak ALPs accessible via *t* tresonances.
- Clear complementarity with other experiments
- Also with our light-by-light,  $h \rightarrow aa \rightarrow 4\gamma$

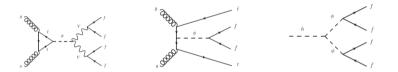





- Monojet Jet(s)+E<sup>miss</sup>
- Dijet/dilepton searches
- Invisible Higgs decays
- Extended Higgs Sectors (2hdm+a)
- Dark Higgs Boson Searches
- Dark Sectors, semi-visible jets and LLPs



### Dark Higgs Boson Models - Introduction

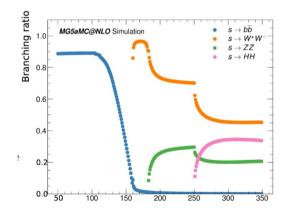

- Two-mediator model
- Assume dark matter acquires its mass through interaction with a dark higgs boson
- Also an extension of spin-1 simplified models
- Two mediators: massive Z' and a dark Higgs boson *s*



San

## Dark Higgs + dark photon models

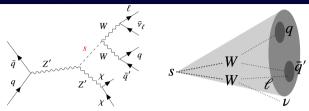
- Given a dark Higgs boson of mass  $m_s$  and mixing angle  $\theta$ , production as SM *h*.
- SM-like dark Higgs decay,  $s \rightarrow hh$  or  $h \rightarrow ss$  are allowed.
- Constraints from precision Higgs,  $h \rightarrow inv$ , di-Higgs/diboson resonances



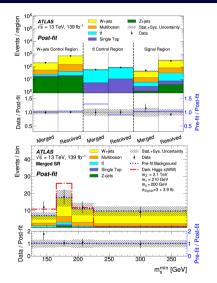

- Can extend to include additional interactions of the corresponding gauge boson.
- $\bullet \rightarrow$  dark photon, couplings either direct (Z' earlier) or via kinetic mixing (dark photon).



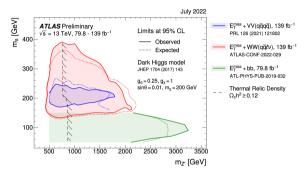
## Dark Higgs Phenomenology


- Run-2 analysis benchmark assumed:
  - $g_{\chi} = 1.0, \, g_q = 0.25, \, \sin \theta = 0.01$
  - Standard simplified model choices, s unstable, even if lighter than DM.
  - Small mixing helps avoid constraints.
- $m_{\chi}=$  200 GeV.



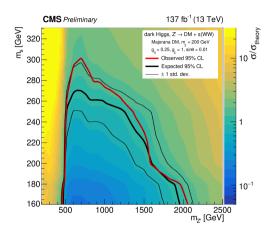

200

### Dark Higgs Boson Searches I


# 2211.07175



- Two mediator model (JHEP 04(2017)143) Z' and dark Higgs (s).
- Search for  $W(l\nu)W(q\bar{q})$  decay.
- *E<sub>T</sub><sup>miss</sup>*>200 GeV, *m<sub>T</sub>*>220 GeV
- Either one merged  $W o q \bar{q}$  merged TAR jet or two jets.
- W/Z+jets constrained using 1µ, 2-lepton CRs.
- Reconstruct  $m_s$ , search for excess.




## Dark Higgs Boson Searches II



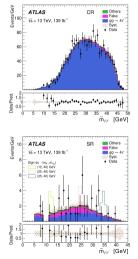
#### ATLAS DM Summary Plots

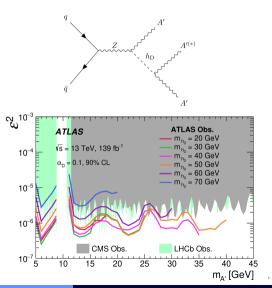
• Search complements earlier  $s \rightarrow W(q\bar{q})W(q\bar{q})$  search, and  $s \rightarrow b\bar{b}$  reinterpretation.



CMS search for the dileptonic WW signature sets similar constraints.

James Frost (Oxford)

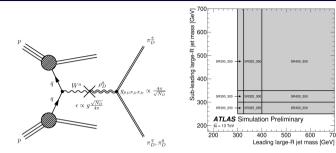

**RAL** Seminar


Sar

# Dark Photon Searches - Exotic Z decays

# 2306.07413

- Dark Abelian Higgs adds dark Higgs h<sub>D</sub> for massive dark photon A'.
- A' decays into lepton pairs (or hadrons)
- For light A' masses,  $Z \rightarrow h_D A'$
- At least 2 lepton pairs similar masses.
- Fit to the average dilepton mass,  $\bar{m_{\ell\ell}}$ .
- $qq \rightarrow 4\ell$  dominant background.

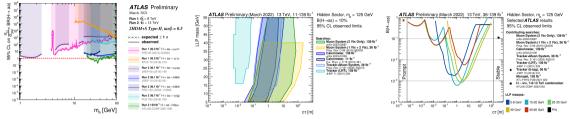




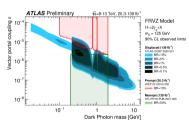


James Frost (Oxford)

### Dark Meson search

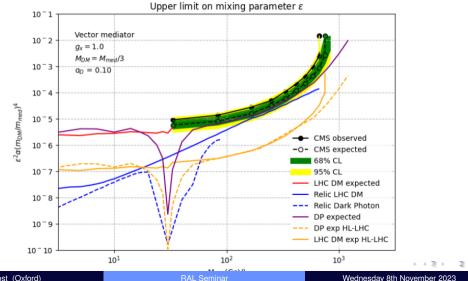

# ATLAS-CONF-2023-021




- Resonant production of dark  $\rho$ , dark  $\pi$  pair signature
- $\eta = m_{\pi_D}/m_{\rho_D}$
- Consider  $\eta <$  0.5, thus  $\rho_D^{\pm,0} \rightarrow \pi_D^{\pm} \pi_D^{\mp,0}$
- Gaugephobic  $\rightarrow \pi_D^{0,+}$  decay to  $t\bar{t}, t\bar{b}$
- $\bullet~$  3t,1b or 2t,2b  $\rightarrow$  8-10 jets, 4 b-jets
- Fully hadronic signature, recluster into R = 1.2 jets.



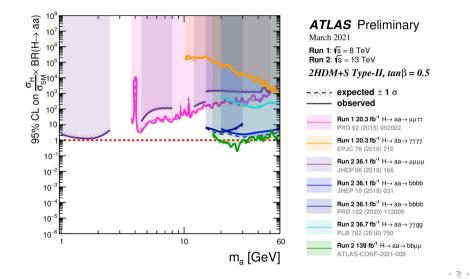
# Summaries for prompt & LL signatures




- LLP, or phase spaces with them, are ubiquitous in many DM models.
- Important complementarity with prompt searches. (Cf. visible/invisible, low-/high-mass).
- Also the very long-lived extreme e.g. monojet, h→Inv (for e.g. h→ss).



 Encountered for h-> aa, dark photon (FRVZ, but better HAHM). Will appear for darkjets, ALPs, 2hdm+a/dark higgs.


### Monojet and the dark photon portal

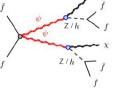


James Frost (Oxford)

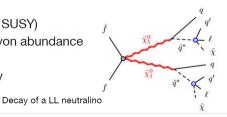
Dac

#### Low-mass resonance searches




James Frost (Oxford)

RAL Seminar


Dac

### LLP Mechanisms I

- Co-annihilation (SUSY models, mass-degeneracy)
  - naturally makes the slightly heavier particle long-lived
  - e.g. wino-bino/wino-Higgsino co-annihilation -> long-lived neutralinos
    - displaced Higgs, target with (e.g.) displaced vertex + MET analysis, non-prompt photons, displaced dielectrons.



- Asymmetric DM (analogous to RPV SUSY)
  - connects DM abundance to baryon abundance via higher order B-L operator
  - importantly, allows LSP to decay into dark sector plus SM

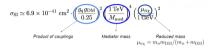


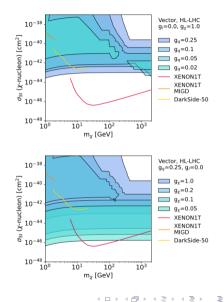
### LLP Mechanisms II

- Freeze-in (Feebly-interacting particle (FIP) models)
  - small couplings, long-lived
  - dark sector never in thermal contact, DM produced gradually from dark sector

• e.g. Heavy particle decays to DM & SM, s.t. DM abundance follows production rate

- stau NLSP -> SM & DM
- $\circ \quad \tilde{\ell}^{\pm} \to \ell^{\pm} \tilde{G}$


- Key feature is that the coupling is highly suppressed, thus a LL NLSP.
- 105 - DV + Etter 95% CL (32.8 fb-1) \_\_\_\_ DV + ET in 95% CL (300 fb-1) 104 ... DV + ET 95% CL (3000 fb-1) Disaccearing Tracks 95% CL (36.1 fb-E --- Disappearing Tracks 95% GL (3000 fb-107 - MATHUSLA100 95% CL (300 fb-1 CT X2 ---- MATHERI & 100 95%, CL. (2000 B--1 102 MATHUSLA200 95% CL (300 fb-1) MATHERSI &200 95% CL /2000 Ph-1 - 0N = 0.12 (m = 1 GeV, T\_\_\_\_ = 50 GeV) 10 ---- 0/2 = 0.12 (m = 1 GeV. Tow = 160 GeV) - 012 = 0.12 (m = 10 MeV. True = 50 GeV. D/2 = 0.12 (m = 10 MeV, Tow = 160 GeV) 100 - 0/2 = 0.12 (m = 100 KeV, Tra = 50 GeV) 017 - 0.12 (m - 100 KoV Ten - 160 GeV 10 No et al. arXiv:1908 11387 1100 1300 1500 1700 1900 mo (GeV)
  - so LL sleptons: displaced leptons, disappearing track, dE/dx


Э

イロト イポト イヨト イヨト

• Multi-D space.

#### • Usually we fix 2 of these, scan 1.





Dac

### Spare slide

James Frost (Oxford)

€ 990

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶