Progress on Muon Cooling

NINTERNATIONAL UON Collider Collaboration

Chris Rogers*, ISIS Neutron and Muon Source,

*chris.rogers@stfc.ac.uk

Progress on Muon Cooling Demonstration

- Muon production
 - Target and transverse capture
 - Beam cleaning
 - Longitudinal capture
 - Charge separation
 - First cooling
 - Bunch merge
 - Second cooling
 - Final cooling
 - Reacceleration
- Complex system
- Requires demonstration of key component ionisation cooling
 - Focus for this talk will be ionisation cooling

- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more parallel
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing \rightarrow low β
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS cancels the cooling
- Verified by the Muon Ionisation Cooling Experiment (MICE)

6D Ionisation Cooling

- Initial beam is narrow with some momentum spread
 - Low transverse emittance and high longitudinal emittance
- Beam follows curved trajectory in dipole
 - Higher momentum particles have higher radius trajectory
 - Beam leaves dipole wider with energy-position correlation
- Beam goes through wedge shaped absorber
 - Beam leaves wider without energy-position correlation
 - High transverse emittance and low longitudinal emittance
- Tests done at Fermilab

Cooling for a Muon Collider

Rectilinear Lattice

- Challenges
 - Dispersion and closed orbit control for 6D cooling
 - Successful RF operation and suppression of RF breakdown
 - Maintaining adequate acceptance between stop bands
 - Magnet engineering
 - Integration of magnet with RF and absorber
 - Day-to-day operation and instrumentation
- Also intensity/collective effects → proton beam test?
 - Space charge, beam loading, absorber/RF window heating
 - Decay radiation load on magnets

Demonstrator Layout

Comparison with Existing Data

	MICE	Demonstrator
Cooling type	4D cooling	6D cooling
Absorber #	Single absorber	Many absorbers
Cooling cell	Cooling cell section	Many cooling cells
Acceleration	No reacceleration	Reacceleration
Beam	Single particle	Bunched beam
Instrumentation	HEP-style	Multiparticle-style

Science & Technology Facilities Council

CERN Siting Options

C/O Roberto Losito

Science & Technology Facilities Council

Layout – 10 kW option

Science & Technology Facilities Council

Preliminary optics layout

- Preliminary optics layout seems okay
 - Still work in progress
- Dipoles
 - ~ 0.7 T, 30°
 - 0.5 m long
- Quads
 - ~ 1 T/m, TBC
 - 0.5 m long
- Approx 1.5m by 4m region for beam stop
- Followed by beam preparation system

nuSTORM

- New site compatible with nuSTORM
 - Measurement of neutrino scattering cross sections
 - Beyond Standard Model physics programme
 - Muon beam test area for Demonstrator
- Demonstration of highest-current high-energy muon beam facility
 - Pion beam handling
 - Target concepts can be tested
 - FFA storage ring \rightarrow rapid acceleration concepts

Muon energy [MeV/c]

Layout – nuSTORM (2)

Beam preparation system

- ~ 100 ps pulsed muon beams don't exist
 - Muons have only rarely been accelerated in conventional RF cavity
 - Low emittance muon beam challenging to achieve
- Need to consider a system to prepare the muon beam
 - Assume momentum collimation in switchyard
 - Transverse collimation
 - Longitudinal phase rotation

Beam Preparation System		
Parameter	Value	
Cell length	1 m	
Peak solenoid field on-axis	0.5 T	
Collimator radius	0.05 m	
Dipole field	0.67 T	
Dipole length	1.04 m	
RF real estate gradient	7.5 MV/m	
RF nominal phase	0° (Bunching)	
RF frequency	704 MHz	

Cooling System

Cell length	2 m
Peak solenoid field on-axis	7.2 T
Dipole field	0.2 T

Preliminary Cooling Cell Concept

Optics vs momentum

- Acceptance driven by tune consideration
 - Tune = number of focusing oscillations per magnetic cell
 - Acceptance for tune near to resonances

International

Dipole configuration

- Two possible dipole configurations
 - ++++
 - + - +

Dipole configuration

- + - + yields much more dispersion
- Can create considerably more 6D cooling
- Cost is more non-linearity
 - Challenging to match

Integration issue: RF

- B-fields reduce RF Safe
 Operating Gradient (SOG)
 - e⁻ emitted from copper
 - B-field focuses on far wall
 - Induces sparks
- Muon cooling needs high RF gradient + B-field
- Two routes demonstrated
 - Either: Beryllium window resistant to damage
 - Or: High-pressure gas absorbs spark
- Other ideas
 - Operate at IN2 temperature
 - Short RF pulse to limit heating

Window material	B-field (T)	SOG (MV/m)
Cu	0	24.4 ± 0.7
Cu	3	12.9 ± 0.4
Be	0	41.1 ± 2.1
Be	3	$>49.8\pm2.5$
Be/Cu	0	43.9 ± 0.5
Be/Cu	3	10.1 ± 0.1

Bowring et al

Be RF & LiH Performance

- Use Beryllium for RF cavity walls
- Use LiH in absorber
- Good cooling performance
 - Transverse and longitudinal emittance reduced by ~ 20 %
 - Approx factor two reduction in 6D emittance
- Optimisation ongoing
 - Assumes perfect matching for now

6.3 mm³

6D ε out

Lowest energy beams → muSR

Demonstrating full cooling performance

Longitudinal only simulation!

- About 12 % of the muon beam ends up in the low energy bucket (assume uniform incident beam in energy)
- After 1 metre of cooling system

International

Assumes full effort of major lab e.g. CERN, Fermilab

- Demonstration of cooling is a key technology requirement for Muon Collider
 - Improved demonstrator lattice studied
 - Beam preparation system looks okay
 - Looking at layout from target to cooling system for CERN site
 - Happy to look at non-CERN sites!
- Aim is to deliver a design by 2026
 - In time for next European strategy update

