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Progress on Muon Cooling @
Demonstration M

= Muon production
" Target and transverse capture
= Beam cleaning
" Longitudinal capture
= Charge separation
= First cooling
* Bunch merge
= Second cooling
= Final cooling
= Reacceleration

= Complex system

= Requires demonstration of key component - ionisation cooling
= Focus for this talk will be ionisation cooling
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lonisation Cooling %>

RF| 75— MUONS

= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction
* End up with beam that is more parallel

= Multiple Coulomb scattering from nucleus ruins the effect

= Mitigate with tight focussing = low 3

= Mitigate with low-Z materials
= Equilibrium emittance where MCS cancels the cooling

= Verified by the Muon lonisation Cooling Experiment (MICE)
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6D lonisation Cooling

Initial beam is narrow with some momentum spread

= Low transverse emittance and high longitudinal emittance
Beam follows curved trajectory in dipole

= Higher momentum particles have higher radius trajectory
= Beam leaves dipole wider with energy-position correlation
Beam goes through wedge shaped absorber

= Beam leaves wider without energy-position correlation

» High transverse emittance and low longitudinal emittance
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Cooling for a Muon Collider

International
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LH, absorber Collaboration
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Rectilinear Lattice @
JAE

solenoid
- RF cavities
wedge
B B

window

L 5
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= Challenges
= Dispersion and closed orbit control for 6D cooling
= Successful RF operation and suppression of RF breakdown
= Maintaining adequate acceptance between stop bands
= Magnet engineering
" |ntegration of magnet with RF and absorber
= Day-to-day operation and instrumentation

= Also intensity/collective effects —» proton beam test?
= Space charge, beam loading, absorber/RF window heating
= Decay radiation load on magnets 6
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Demonstrator Layout

Upstream Instrumentation 5
and Matching ownstream
Instrumentation

== High-intensity high-energy pion source

Target Collimation and
phase rotation
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Comparison with Existing Data ﬂ@b
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Upstream Instrumentation :
and Matching Inséumentaion
-ﬂ.\:_ == High-intensity high-energy pion source

Target Collimation and
phase rotation

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single patrticle Bunched beam
Instrumentation HEP-style Multiparticle-style
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CERN Siting Options

Photos aériennes

10 kW option

C/O Roberto Losito
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Layout - 10 kW option
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Preliminary optics layout %D

= Preliminary optics layout

B, [T]
seems okay SHE Y-
= Still work in progress . | preparation
= Dipoles o0 _;-: Lot iy
= ~0.7T, 30° 125 1 i
= 0.5 m long 10,04 i
- Quads E 75 E i
= ~1T/m, TBC i i
= 0.5 m long e T | ]
= Approx 1.5m by 4m 2.5 1 | |
region for beam stop ol
= Followed by beam | Target
preparation system 2 -1 0 1 K[z'm] 3 4 5 6
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NUSTORM @

M[nternational
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= New site compatible with NnUSTORM = = o - a0 ot o o
= Measurement of neutrino scattering cross sections
= Beyond Standard Model physics programme

= Muon beam test area for Demonstrator

= Demonstration of highest-current high-energy muon beam
facility

"= Pion beam handling
= Target concepts can be tested
" FFA storage ring = rapid acceleration concepts
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Layout - nuSTORM (2)
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Element positions are indicative
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Beam preparation system %D

\.\-““‘ /

= ~ 100 ps pulsed muon beams
don’t exist
= Muons have only rarely been

accelerated in conventional RF
cavity

= Low emittance muon beam
challenging to achieve

= Need to consider a system to Beam Preparation System
prepare the muon beam Parameter Value
. ) Cell length 1 m
= Assume momentum collimation Peak solenoid field on-axis 0.5T
i i Collimator radius 0.05 m
In SWItChya rd _ _ Dipole field 0.67T
= Transverse collimation Dipole length 1.04 m
. . . RF real estate gradient 7.5 MV/m
= Longitudinal phase rotation RF nominal phase 0° (Bunching)
RF frequency 704 MHz

Cooling System

Cell length 2 m
Peak solenoid field on-axis 7.2T
Dipole field 02T
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Preliminary Cooling Cell Concept

2 m
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' ' R.F" real est;te gradient 7.5 MV/m
RF nominal phase 0° (Bunching)
RF frequency 704 MHz
Cooling System
Cell length 2m
Peak solenoid field on-axis 72T
Dipole field 02T
Dipole length 0.1 m
RF real estate gradient 22 MV/m
RF nominal phase 20°
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! Optics vs momentum @
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= Acceptance driven by tune consideration
* Tune = number of focusing oscillations per magnetic cell
= Acceptance for tune near to resonances
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Transverse Position [mm]

Transverse Position [mm]
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= Two possible dipole configurations
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200
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" 4 - -+ yields much more dispersion
= (Can create considerably more 6D cooling

= (Cost is more non-linearity
= Challenging to match
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= B-fields reduce RF Safe
Operating Gradient (SOG)

"= e emitted from copper
= B-field focuses on far wall
" Induces sparks
= Muon cooling needs high
RF gradient + B-field
= Two routes demonstrated

= Either: Beryllium window
resistant to damage

= Or: High-pressure gas
absorbs spark
= Otherideas

= QOperate at IN2
temperature

= Short RF pulse to limit
heating

ke

Integration issue: RF
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Window
material B-field (T) SOG (MV/m)
Cu 0 2444+ 0.7
Cu 3 129 + 0.4
Be 0 41.1 £2.1
Be 3 > 498 4+ 2.5
Be/Cu 0 439 £0.5
Be/Cu 3 10.1 £ 0.1
Bowring et al
Pressure (psia) at T=293K
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Be RF & LiH Performance @
JA e

= Use Beryllium for RF cavity
walls

= Use LiH in absorber

= Good cooling performance 397

= Transverse and E
longitudinal emittance E
reduced by ~ 20 %

= Approx factor two
reduction in 6D emittance

3.5 1

2.0+

1.5 A

= Optimisation ongoing : 5 = % p 50"
. z[m]
- ,fb\ssumes perfect matching Transmission losses 2.00%
or now Decay losses 4.00%
Trans € in 1.95 mm
Trans € out 1.57 mm
Long € in 3.61 mm
Long € out 2.99 mm

& Science&Technology6D €in 12.7 mm?
< |SIS 6Deout 6.3 mm?3



Demonstrating full cooling @

erformance it
Fricti.onal Energy spread Rectilinear
Cooling? broadening cooling
1 [ ] [ | ]
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= Cooling scaleswith dp/p°" 10° o1
= Higher energy - more RF
= Lowest energy beams - muSR
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Demonstrating full cooling @
erformance |

M[nternational
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= Longitudinal only simulation!

= About 12 % of the muon beam ends up in the low energy
bucket (assume uniform incident beam in energy)

= After 1 metre of cooling system
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Timeline
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o Technically limited ti meline
o
- E
g =2 Initial design
o E Fadility Conceptual
g = De&'ﬁn
» 8 Technical
Design
E Facility Construction
Dermonstrator E
design -
Preparatory E
work §
Prototypes Demenstrator e
Construch on =
% Demonstrator exploitation and upgrades
& =
@ Design and
E modelling
T rototypes 1
Pre-series
Production
Cost and Performance Ready fo Ready to Ready to
Estimation Commit Construct Operate

= Assumes full effort of major lab e.g. CERN, Fermilab



Outlook @
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= Demonstration of cooling is a key technology requirement for

Muon Collider
* Improved demonstrator lattice studied

= Beam preparation system looks okay
= Looking at layout from target to cooling system for CERN site
= Happy to look at non-CERN sites!
= Aim is to deliver a design by 2026
" |n time for next European strategy update
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