## **Detector at a Muon Collider**

# Karol Krizka



UON Collider Collaboration







#### UK Muon Beams 2023

1)Measurements of the Higgs boson targeting <1%

### 2)Direct searches at high energies to understand any deviations.

Precision is key for both!

|                  | HL-LHC | ILC (500) | FCC-ee/hh | μC (10 TeV) |  |  |
|------------------|--------|-----------|-----------|-------------|--|--|
| hZZ              | 1.5    | 0.17      | 0.12      | 0.33        |  |  |
| hWW              | 1.7    | 0.20      | 0.14      | 0.10        |  |  |
| hbb              | 3.7    | 0.50      | 0.43      | 0.23        |  |  |
| hyy              | 3.4    | 0.58      | 0.44      | 0.55        |  |  |
| hgg              | 2.5    | 0.82      | 0.49      | 0.44        |  |  |
| hcc              | -      | 1.22      | 0.95      | 1.8         |  |  |
| hττ              | 1.8    | 1.22      | 0.29      | 0.71        |  |  |
| hyZ              | 9.8    | 10.2      | 0.69      | 5.5         |  |  |
| hμμ              | 4.3    | 3.9       | 0.41      | 2.5         |  |  |
| htt              | 3.4    | 2.82      | 1.0       | 3.2         |  |  |
| Γ <sub>tot</sub> | 5.3    | 0.63      | 1.1       | 0.5         |  |  |



## **3 TeV vs 10 TeV Detectors**

- Historically studies were done assuming  $\sqrt{s}=1.5$  TeV.
  - Lots of results. Hence the bulk of this presentation.
- Snowmass2021 suggested  $\sqrt{s}=10$  TeV should be baseline.
  - Results are only starting to appear now. Bit at end...

# **Our Onion (1.5 TeV) Detector**



#### heavily based on <u>CLIC</u> detector

#### tracking system

- Vertex Detector:
  - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
  - 25x25 µm<sup>2</sup> pixel Si sensors.
- Inner Tracker:
  - 3 barrel layers and 7+7 endcap disks;
  - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
  - 3 barrel layers and 4+4 endcap disks;
  - 50 µm x 10 mm microstrip Si sensors.

#### shielding nozzles

Tungsten cones + borated polyethylene cladding.

#### **UK Muon Beams 2023**

• 7.5 λ<sub>1</sub>.

sensors:

 $\rightarrow$  22 X<sub>0</sub> + 1 λ<sub>1</sub>.

muon detectors

#### November 24, 2023

## **Beam Induced Background**

- BIB = muon beam decays and strike the detector
- Several main mitigation
  - 10° tungsten nozzle to shield from beam decay products
  - Precision timing information from detectors



# **Simulating Beam Induced Background**

### 1)Muon trajectory, decay and transport of products via FLUKA\*

• Full beam optics present through LineBuilder Interface

## 2)GEANT simulation of particles entering the detector





\* validating against an older model from MARS15

## **Radiation Damage From BIB**



7 UK Muon Beams 2023

## **The Scale of BIB**



|           | ITk Hit Density<br>[mm <sup>-2</sup> ] | MCC Equiv. Hit Density<br>[mm <sup>-2</sup> ] |
|-----------|----------------------------------------|-----------------------------------------------|
| Pix Lay 0 | 0.643                                  | 3.68                                          |
| Pix Lay 1 | 0.022                                  | 0.51                                          |
| Str Lay 1 | 0.003                                  | 0.03                                          |

ITk Pixels TDR, ITk Strips TDR





## **R&D Towards Muon Collider Requirements**

#### The 2021 ECFA detector research and development roadmap (with updates).

| "Technical" Start Date of Facility (This means, where the dates are not known, the earliest technically feasible start |                      |                  | < 2030                                                                |                        |               |                         | 2030-2035 |                           |                                 |       | 2035 -<br>2040 | 2040-2045         |        | > 2045             |                 |        |               |              |       |
|------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------------------------------------------------------------------|------------------------|---------------|-------------------------|-----------|---------------------------|---------------------------------|-------|----------------|-------------------|--------|--------------------|-----------------|--------|---------------|--------------|-------|
| date is indicated - such that detector R&D readiness is not the delaying factor)                                       |                      | Panda 2025       | CBM 2025                                                              | <sup>1</sup> HIKE 2030 | Belle II 2026 | ALICE LS3 <sup>1)</sup> | ALICE 3   | LHCb (≳LS4) <sup>1)</sup> | ATLAS/CMS (≳ LS4) <sup>1]</sup> | EIC   | LHeC           | ILC <sup>2)</sup> | FCC-ee | CLIC <sup>2)</sup> | 44-502<br>-2070 | FCC-eh | ~2045         |              |       |
|                                                                                                                        |                      |                  | Position precision $\sigma_{hit}$<br>(µm)                             |                        | ≃ 5           |                         | ≲5        | ≃ 3                       | ≲3                              | ≲10   | ≲15            | ≲3                | ≃ 5    | ≲3                 | ≲3              | ≲3     | ≃7            | ≃ 5          | ≲5    |
|                                                                                                                        |                      | 4 4              | X/X <sub>0</sub> (%/layer)                                            | ≲0.1                   | <b>≃</b> 0.5  | ≃ 0.5                   | ≲0.1      | ≃ 0.05                    | ≃ 0.05                          | ≃ 1   |                | ≃ 0.05            | ≲0.1   | ≃ 0.05             | ≃ 0.05          | ≲0.2   | ~ 1           | ≲0.1         | ≲0.2  |
| (F_                                                                                                                    | CMOS                 | RDT 3.<br>RDT 3. | Power (mW/cm²)                                                        |                        | <b>≃</b> 60   |                         |           | ≃ 20                      | ≃ 20                            |       |                | ≃ 20              |        | <b>≃</b> 20        | ≃ 20            | ≃ 50   |               |              |       |
| etector                                                                                                                | APS<br>assive<br>ADs | <u> </u>         | Rates (GHz/cm <sup>2</sup> )                                          |                        | ≃ 0.1         | ≃ 1                     | ≲0.1      |                           | ≲0.1                            | ≃6    |                | ≲0.1              | ≃ 0.1  | ≃ 0.05             | ≃ 0.05          | ≃ 5    | ≃ 30          | <b>≃</b> 0.1 | 50    |
| ertex D                                                                                                                | M/<br>r/3D/P<br>LG   |                  | Wafers area (") <sup>4)</sup>                                         |                        |               |                         |           | 12                        | 12                              |       |                | 12                |        |                    | 12              |        | 12            |              | 12    |
| >                                                                                                                      | Plana                | DRDT<br>3.2      | Timing precision $\sigma_t (ns)^{5)}$                                 | 10                     |               | ≲ 0.05                  | 100       |                           | 25                              | ≲0.05 | ≲0.05          | 25                | 25     | 500                | 25              | ≃ 5    | ≲0.02         | 25           | ≲0.02 |
|                                                                                                                        |                      | T3.3             | Radiation tolerance NIEL<br>(x 10 <sup>16</sup> neq/cm <sup>2</sup> ) |                        |               | 1                       |           |                           |                                 | ≃6    | ≃ 2            |                   |        |                    |                 |        | $\simeq 10^2$ |              | 0.5   |
|                                                                                                                        |                      | DRD              | Radiation tolerance TID<br>(Grad)                                     |                        |               |                         |           |                           |                                 | ~ 1   | <b>≃</b> 0.5   |                   |        |                    |                 |        | <b>≃</b> 30   |              | 0.05  |

#### Same pathway as for many experiments!

There are attempts to start a generic R&D program in UK (Liverpool 2023)

 $\sigma_t$  = 30 ps, 25µm x 25µm, 5 x 10<sup>15</sup> 1 MeV neq / cm<sup>2</sup>

| Technology        | Pitch [µm <sup>2</sup> ] | Rad Hard [neq/cm <sup>2</sup> ] | Timing Res. [ps] |
|-------------------|--------------------------|---------------------------------|------------------|
| AC/TI/DC LGAD     | ~100 x 100               | 2.5 x 10 <sup>15</sup>          | 20-30            |
| 3D (TIMESPOT)     | 55 x 55                  | 2.5 x 10 <sup>16</sup>          | 10               |
| Planar (TimePix4) | 55 x 55                  | ??                              | 50               |
| Planar (NA62)     | 300 x 300                | 1.3 x 10 <sup>14</sup>          | 130              |

- Missing ingredient is large scale ASIC with TDCs
  - IGNITE, PicoPix...
- Don't forget system level issues!
  - Scaling up, power, mechanics...

## **Advantages of Realistic Digitization**

Work In Progress: Currently not part of common workflow

• Provides a more accurate description of hit clusters



# **Old Algo: Conformal Transform**

- Employ hit multiplicity reduction strategies
  - Region of Interest seeded tracking
  - Directional information from double layers
- Require tight filtering for practical tracking



Good track reconstruction once algorithm completes





# **Flavour Tagging**

- Secondary vertex reconstruction possible with BIB
  - Caveat: using a very loose hit filter
- Work ongoing on multivariate tagger
- Double layer filtering → possible bias





# **New Algo: CKF Tracking**



- Seeded CKF runs in ~4 min / event.
- Parameters need to be optimized.
  - Seeding: *very narrow collision region*
  - CKF: No branching allowed





Fake track removal (optimized with evolutionary algorithms)

| Eff WP | Fakes / event |
|--------|---------------|
| 90%    | 3900          |
| 80%    | 0.13          |
| 70%    | 0.06          |

## Calorimeters



### Hadronic Calorimeter

- 60 layers
- steel absorber
- Plastic scintillating tiles, 30x30 mm<sup>2</sup>

## **Electromagnetic Calorimeter**

- 40 layers
- W absorber
- Silicon pad sensors, 5x5 mm<sup>2</sup>

# **BIB in Calorimeter**

• Timing is important



• Shower shape another handle



Remaining BIB is removed by subtraction

\* mostly photons

- Accept ECal hit if  $E_{HIT} > \langle E_{BIB} \rangle + 2\sigma_{BIB}$
- Correct remaining ECal hits  $E_{\text{HIT}} \rightarrow E_{\text{HIT}} <\!\!E_{\text{BIB}}\!\!>$



ECal energy deposition in one bunch crossing.

# **Crilin Calorimeter (ECAL)** = CRystal calorImeter with Longitudinal INformation

- <u>Segmented</u> homogeneous calorimeter
  - 10 x 10 x 40 mm<sup>3</sup> PbF<sub>2</sub> crystals
  - 4 x 4 mm<sup>2</sup> SiPMs
- Time resolution <100 ps
- Prototypes being built and tested









# **Crilin Calorimeter (ECAL)** = CRystal calorImeter with Longitudinal INformation

- <u>Segmented</u> homogeneous calorimeter
  - 10 x 10 x 40 mm<sup>3</sup> PbF<sub>2</sub> crystals
  - 4 x 4 mm<sup>2</sup> SiPMs
- Time resolution <100 ps
- Prototypes being built and tested









## **Jet Reconstruction**



#### Fully efficient for p<sub>T</sub>>80 GeV with ~20% resolution



#### November 24, 2023

### **Electrons and Photons**







- Good performance.
- Minimal impact from BIB.

## **Muon Spectrometer**

### • RPC cells of 30x30 mm<sup>2</sup>

• 7 barrel layers, 6 endcap layers

### • BIB not a major problem

- Mostly in endcap tips (close to beamline)
- Suppressed via geometrical cuts (<10°)



## **1.5 TeV vs 10 TeV**

#### Concept developed at KITP workshop at Santa Barbara



#### BIB is less of an issue.





#### But scattered muons from ZZh are more forward (nozzle)

0

50

100

x [mm]

-50

-100



#### November 24, 2023

# Conclusions

#### • Name of the game is reducing hits from BIB.

• Timing plans an important role.

### • Advanced simulation and reconstruction of detector available.

- Big progress during Snowmass2021 towards improving software.
- Important to update sensitivity studies with detector simulation.
- Progress being made towards 10 TeV studies.
  - BIB is less of an issue.

(New) UK Mailing List: UK-MUON-DETECTOR@JISCMAIL.AC.UK Catch-ups *first Monday of Month* at 3pm

## **BACKUP SLIDES**

# **WIP Realistic Digitization**

### Two models for vertex modules

- Trivial (collect charge in pixel)
- RD53A (complete simulation, ref)
- Hoshen-Kopelman for clustering
  - Eval alternatives as future development

### • Performance tested with full BIB

- Trivial: 100 s / evt
- RD53A: 5000 s / evt



![](_page_25_Figure_10.jpeg)

![](_page_25_Figure_11.jpeg)

# **Track Reconstruction Algo #1**

![](_page_26_Figure_1.jpeg)

#### Algorithm + code inherited from CLIC software.

aka optimized for clean e<sup>+</sup>e<sup>-</sup> environment

**Details** 

# **Triplet Seeded CKF**

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

### Similar algorithm used by ATLAS.

aka optimized for high hit multiplicity