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Proton driver parameters

Energy Int. Bunch length

Table 3.1: Tentative Parameters for the H™ Linac. Table 3.2: Tentative parameters for the compressor.
Linac Parameters Symbol Unit Option1 Option 2
Parameters Symbol Unit Value
Final energy Elinac GeV 5.0 Energy ERing GeV 5 10
Repetition rate - Hz >5 Circumference C m between 300 and 900
o . _ . Max. pulse length - ms 2.0 Protons on target Ny - 5x10™  2.5x10™
S g 2 g Max. pulse current  ILinac mA 40.0 Final rms bunch length o ns 2
g ‘_=° LC) o) Norm. rms emittance  €rnqc mm.mrad 2.5 i Z
T 2 = = Power P MW 2.0 (4.0%) Geo. rms. emittance . Exy 7 mm mrad >5
el a ° 8 RF frequency frE MHz 352 and 704 Number of turns for phase rotation Nyt - 50
éf * Possible future upgrade. Higher powers will be included
in the study once a baseline solution is available.

3|

* Tentative parameters for H- linac, accumulator and compressor rings submitted (EU milestone document, Nov 2023).
* Accumulator ring (AR) to generate bunch intensity and time structure.
* Compressor ring (CR) reduces bunch length to ~ns level.

The challenge of the proton driver is to produce high intensity (2 MW) short bunches (2ns rms) at low rep rate (5Hz)
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SPL as driver for Neutrino Factory

* 5 GeV H-from SPL operating at 50 Hz

Accumulation Duration SPL beam

* 6 bunches, 120us duration, injected into AR and then into =400 uS (42 bunches -

the CR 21 gaps]

Accumulator
[120 ns pulses -
60 ns gaps]

Compressor
[120 ns bunch -

* Zero phase slip in AR to maintain bunch separation during compression t=0us
accumulation (no RF needed in this case).

V(h=3) = 4 MV]

>

o

Target
[2 ns bunches
— 6 times]

o o> 7

* CR features negative bends to minimise dispersion while t=12ps
maintaining high phase slip (rotation rate < \/ﬁ ) .
e oo t=24ps
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Figure 10: Arc cell with positive and negative bending magnets.
Spaces of 1.85 m are retained at the both ends of superconducting
magnets. They are necessary for coil-ends, connections, etc.
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Bunch rotation
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RF phase/3 (deg.)

RF phase/3 (deg)

Figure 14: Phase rotation simulation.
The r.m.s. bunch length of 1.98 ns is achieved with tuning of rf voltage
and initial longitudinal position (3.8 MV and -1.7 degree).

M. Aiba, CERN-AB-Note-2008-048, 2008

* Results of 6D ORBIT simulations including space charge

* Horizontal size spread by dispersion. This helps to reduce
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Longitudinal tracking study (no SC
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1 PR B -

Time: 0.0355 msec

Energy, E;= 5.00 GeV

Science and
Technology
Facilities Council

* Repeat study in longitudinal plane only (C. Prior). No space charge.
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* Minimum rms bunch duration is 3.4ns.



Longitudinal tracking study (with SC
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Table 1: FMC Accumulator and Compressor Parameters

FNAL design for proton driver

Parameters AR CR
Circumference, m 308.23 308.23
Momentum compaction -0.052 0.001
Slippage factor -0.063 -0.01

RF frequency, MHz 3.87 3.87

RF voltage, kV 10 240
Synchrotron tune 2.1-10* 42-10*
Peak current, A 100 1040
Final r.m.s. bunch length,ns  29.2 32

Final r.m.s. energy spread 5.2.10* 6.9-10°
Threshold impedance, Ohm 20 3553
R.m.s. emittance, pm 5 5

Space charge tuneshift, h/v 0.02/0.02 0.14/0.16
Betatron tunes, h/v 7.94/6.91 6.76/8.44
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Y. Alexahin, L. Jenner, D. Neuffer, Proc. Of IPAC2012, TUPPCO043 (2012)

Aim for high n in AR to suppress instabilities and low n in CR to reduce required
voltage

Adiabatic compression in the AR to reduce rms bunch length to 30ns.

Flexible Momentum Compaction lattice to modify the dispersion while keeping phase
advance fixed.

Recent proposal for compact (¥100m circumference) CR by S. Nagaitsev.
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Rings with acceleration

* In the case the linac is not full energy, RCS or FFA rings may be considered. Various combinations of such rings have
been considered for the NF case.

* Scaling FFAs are fixed field machines with modest orbit excursion. The tunes are fixed .
* FFAs allow the beam to be stacked at the top energy before extraction, circumventing the space charge limit at
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FFA for NF proton driver (G. Rees)
N

High intensity ~1014 protons /;/ ‘\.\
* Achieved with phase space painting in RCS 3 \ 66 cells
booster ( 3 GeV RCS Booster
50 Hz rep rate \_ /f}
Booster circumference 400m \.\ P 10 Ge‘;';_fzt caling
FFA circumference ~800m \ "B H
Bunch area (h=3) 1.1 eV. Sec -
ns bunch compression v 0.2GeV H' Linae
* Achieved in FFA ring H- collimation /
* 1.3 MV/turn for 3ns rms \ P

i
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Bunch compression in RCS (C. Prior)

* Approach, but don’t cross, y; during . = = T p B Final compression
< D £ a f : 2‘4\ - ':;‘r't“,\" 2l <,/:\1\
acceleration. & 12 0/ & enhanced by

* As bucket becomes increasingly squeezed, —_———— e addition by h = 24
bunch is compressed. e voltage and achieved
* Switch on high harmonic RF in the last few f r e a | a | by converging on

ms to compress further. - o of v isochronous
conditions.
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Use unstable fixed point (C. Prior)

Neutrino Factory: Creation of Short Bunches 1

Stap 1. Bunch langtbhening at unstable fixed point in RCS, V =2MV, =4, v < %

* Switch phase of RF to unstable fixed point to stretch e e e
bunch. 3 ;) :
* Then switch back to stable fixed point so bunch
rotates to upright position with minimum length. [P — || |
 Distortion of bunch in non-linear voltage region. ' N ' ) T
* Separate compressor ring with with y>y, and zero RF motion rotatas it 10 upsght (compramed) state. Finsl bunch langth — 1.7 o8 ).
voltage can result in improved bunch length. S U R
\M\ .® </>
e Bunch langth (nsec) | (£)12.56 — 483 — 13.9
- rms 5.60 — 169 — 1.66
O op +5.0% 1077
i J ¥ — +2.48x 1072
— +3.46x 1072
Ve 10.3756
Yolts (MY) 2.0
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.
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Beam stacking

« Beam stacking involves storing successive bunches in the ring. The bunches are allowed to
coast and are stacked in terms of energy.
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Why stack?

* To increase the circulating current (e.g. ISR).

* To circumvent the intensity limit coming from space charge at injection (~By?).
* To change the extraction rep rate without changing the machine rep rate.

In order to minimise the longitudinal emittance of the final stacked beam, successive
beams should be stacked one below the other.
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Assume a beam has already been stacked
and is coasting (blue).

Inject a second bunch (orange) and
accelerate to just below the coasting beam.
Ensure ¢ is zero at final energy.

Debunch adiabatically.
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Conclusions

 Various solutions for the NF/MC proton driver have been proposed.

* The proton driver rings are high intensity, high energy machines — foil heating, instabilities and beam
loss are issues to be studied in detail (is laser stripping an option?).

* In fixed energy compressor rings, bunch may be rapidly rotated in a large RF bucket (non-linearities at
high amplitude introduce wiggles).

* In rings with acceleration, bunch may be compressed adiabatically (y -> v;).

* In FFAs beams may be stacked at high energy. Unclear at this point if this would benefit this
application.
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