Cross Sections @vSTORM

Luis Alvarez-Ruso

$\nu {\sf STORM}$

- Precisely known flux:
 - Normalization
 - Flavor composition
 - Energy spectrum

$$egin{array}{rcl} \mu^+ & o & e^+
u_e ar
u_\mu \ \mu^- & o & e^- ar
u_e
u_\mu \end{array}$$

- Ideal to measure (anti)neutrino cross sections
 - Unprecedented precision
 - For both electron and muon (anti)neutrinos
 - Energy scan

$\nu {\rm STORM}$ legacy

- ... concerning cross sections.
- Beyond ancillary measurements for ongoing/future oscillation experiments

νSTORM legacy

- ... concerning cross sections.
- Beyond ancillary measurements for ongoing/future oscillation experiments.
- Possibilities (compatible?):
 - Elementary cross sections (proton, deuteron)
 - Neutrino-nucleus cross sections
 - A-dependence (different targets)
 - Exclusive channels
 - Priorities Detectors

Poorly known; measured long ago (70, 80ies): ANL, BNL, FNAL,...

Formaggio & Zeller compilation

- Not a priority for oscillation experiments...
 - ... but priceless input for event generators
- No modern measurements

- Poorly known; measured long ago (70, 80ies): ANL, BNL, FNAL,...
- No modern measurements, except:

Measurement of the axial vector form factor from antineutrino–proton scattering, MINERvA, Nature (2023)

"First high-statistics measurement (...)"

- Physics case: LAR et al., 2203.11298 (Snowmass 2021)
- Quasielastic scattering (including Y production)
 - Axial FF determination
 - Given LQCD input for FF: constrain NSI
 - **Radiative corrections (** $\nu_{\rm e}$ vs ν_{μ} **)**
- Inelastic scattering:
 - **1** π production: dominated by Δ (1232) excitation
 - other processes: $\nu_l N \rightarrow l N' \pi \pi$

 $\nu_l N \to l N' \eta$ $\nu_l N \to l \Lambda(\Sigma) \overline{K}$

strangeness production

Very limited information about the axial current at $q^2 \neq 0$

- Physics case: LAR et al., 2203.11298 (Snowmass 2021)
- Quasielastic scattering
- Inelastic scattering
- Shallow inelastic scattering:
 - transition from RES to DIS
 - Role of Quark-Hadron duality
- Deep inelastic scattering: W>2 GeV, Q² > 1 GeV²
 - Parton distribution function (PDF) determination
 - Impact of higher twists
 - Hadronization: exclusive channels

Physics case:

- Large overlap with the neutrino-nucleon physics
- Nuclear/multi-nucleon effects:
 - Collective modes

Meson-exchange currents (or 2p2h)

understand discrepancies with theory found @MINERvA, NOvA

MINERvA inclusive CC data [Rodrigues et al. PRL (2016) vs T2K ref. model (NEUT) P. Stowell, PhD disertation (2019)

Physics case:

- Large overlap with the neutrino-nucleon physics
- Nuclear/multi-nucleon effects:
 - Collective modes
 - Meson-exchange currents (or 2p2h)
 - Final State Interactions
 - Nuclear effects on PDF
 - Coherent processes

Strategies:

- A-dependence (different targets)
- Some progress made by MINERvA:
- Measurement of ratios of vµ charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2–20 GeV, Phys. Rev. Lett. 112, 231801 (2014)

L. Alvarez-Ruso, IF

Strategies:

- A-dependence (different targets)
- Some progress made by MINERvA:
- Measurement of ratios of vµ charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2–20 GeV, Phys. Rev. Lett. 112, 231801 (2014)
- Simultaneous measurement of vµ charged-current single π+ production in CH, C, H2O, Fe, and Pb targets in MINERvA, Phys. Rev. Lett. 131, 011801 (2023)

Strategies:

- A-dependence (different targets)
- Exclusive final states:
 - one- and two-nucleon knockout
 - single and multiple pion production
 - Experimentally studied by MiniBooNE, T2K (ND280) and MINERvA
 - Tensions between data sets persist
 - Iargely influenced by FSI

Outlook

- Our present understanding of (few-GeV) neutrino interactions with matter would be greatly improved by new precise measurements with wellunderstood vSTORM flux at advanced detectors.
- The future neutrino oscillation program can greatly benefit but vSTORM legacy should go beyond it.
- Progress in hadron and nuclear physics.
- Potential to discover/constrain non-standard interactions and exotic processes.