BSM Physics

Yuber F. Perez-Gonzalez

Autumn Meeting — Neutrinos from STORed Muons (nuSTORM) November 23rd, 2023

What nuSTORM could do?

More questions than answers

2

Let's start with some SM...

Weak mixing angle

Fermion Couplings

$$g_V^f = t_3^f - 2q_f \sin^2 \theta_W$$
$$g_A^f = t_3^f$$

$$\overline{\text{MS}}: \qquad \sin^2 \theta_W(\mu) \equiv \frac{g'(\mu)^2}{g(\mu)^2 + g'(\mu)^2}$$

Autumn Meeting - NuStorm — November 23rd, 2023

Weak mixing angle

Autumn Meeting - NuStorm — November 23rd, 2023

Autumn Meeting - NuStorm — November 23rd, 2023

Backgrounds

• $\nu_e \text{CCQE}, \nu_e A \rightarrow e^- A'$, without visible hadronic activity.

Cut events with at least one proton with $K_p > 50 \text{ MeV}$

• Misidentified $\nu A \rightarrow \nu \pi^0 A'$ events with no or invisible hadronic activity.

One soft photon: $K_{\gamma} < 30 \text{ MeV}$ We do not information

We do not include information from dE/dx

We used $E_e \theta_e^2$ kinetic variable to improve background rejection

Systematics — DUNE

Systematics — DUNE

Measuring $\sin^2 \theta_W$ with neutrino scatterings

Trident Inelastic Scattering

M. A. Kozhushner et. al.1962 W. Czyz et al. 1964 Lovseth et al, 1971

Production of a charged lepton pair from the inelastic neutrino scattering in the Coulomb field of the nucleus

$$\nu_{\alpha} + \mathcal{H} \to \nu_{\alpha \operatorname{or} \kappa(\beta)} + \ell_{\beta}^{-} + \ell_{\kappa}^{+} + \mathcal{H}$$

Autumn Meeting - NuStorm — November 23rd, 2023

Trident Inelastic Scattering

M. A. Kozhushner et. al.1962 W. Czyz et al. 1964 Lovseth et al, 1971

Production of a charged lepton pair from the inelastic neutrino scattering in the Coulomb field of the nucleus

$$\nu_{\alpha} + \mathcal{H} \to \nu_{\alpha \operatorname{or} \kappa(\beta)} + \ell_{\beta}^{-} + \ell_{\kappa}^{+} + \mathcal{H}$$

Autumn Meeting - NuStorm — November 23rd, 2023

Trident Inelastic Scattering

M. A. Kozhushner et. al.1962 W. Czyz et al. 1964 Lovseth et al, 1971

Production of a charged lepton pair from the inelastic neutrino scattering in the Coulomb field of the nucleus

$$\nu_{\alpha} + \mathcal{H} \to \nu_{\alpha \operatorname{or} \kappa(\beta)} + \ell_{\beta}^{-} + \ell_{\kappa}^{+} + \mathcal{H}$$

$$u_{\mu} \rightarrow \nu_{\mu} \, \mu^{+} \mu^{-}$$

CHARM II

PLB 245 (1990) 271

$$\frac{\sigma_{\rm SM}}{\sigma_{\rm SM}} = 1.58 \pm 0.57$$

CCFR

PRL 66 (1991) 3117

NuTeV

 $\frac{\sigma_{\rm CCFR}}{\sigma_{\rm SM}} = 0.82 \pm 0.28$

 $\frac{\sigma_{\rm NuTeV}}{\sigma_{\rm SM}} = 0.67 \pm 0.27$

Autumn Meeting - NuStorm — November 23rd, 2023

Magill, Plestid , 1612.05642 Ballet et al., 1807.10973 Altmannshofer et al, 1912.06765

Relatively small cross section

 $\sigma_{\Psi} \approx 10^{-5} \sigma_{\rm CCQE}$

Magill, Plestid , 1612.05642 Ballet et al., 1807.10973 Altmannshofer et al, 1912.06765

> this transformation

Relatively small cross section

 $\sigma_{\Psi} \approx 10^{-5} \sigma_{\rm CCQE}$

(Anti)Neutrino	SM Contributions
$(\overline{\nu}_{\mu}^{0}\mathcal{H} ightarrow (\overline{\nu}_{\mu}^{0}\mu^{-}\mu^{+}\mathcal{H})$	CC + NC
$\stackrel{(-)}{\nu_{\mu}}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_{e}}e^{\pm}\mu^{\mp}\mathcal{H}$	\mathbf{CC}
$\stackrel{(-)}{\nu_{\mu}}\mathcal{H} ightarrow \stackrel{(-)}{\nu_{\mu}}e^{-}e^{+}\mathcal{H}$	NC
$\stackrel{(-)}{\nu_e}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_e}e^-e^+\mathcal{H}$	CC + NC
$\stackrel{(-)}{\nu_e}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_\mu}\mu^{\pm}e^{\mp}\mathcal{H}$	$\mathbf{C}\mathbf{C}$
$(\bar{\nu}_e^{}) \mathcal{H} \rightarrow (\bar{\nu}_e^{}) \mu^- \mu^+ \mathcal{H}$	NC

Magill, Plestid , 1612.05642 Ballet et al., 1807.10973 Altmannshofer et al, 1912.06765

invariant under

this transformation

Relatively small cross section

 $\sigma_{\Psi} \approx 10^{-5} \sigma_{\rm CCOE}$

(Anti)Neutrino	SM Contributions
$(\bar{\nu}_{\mu}^{0}\mathcal{H} ightarrow (\bar{\nu}_{\mu}^{0}\mu^{-}\mu^{+}\mathcal{H})$	CC + NC
$\stackrel{(-)}{\nu_{\mu}}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_{e}}e^{\pm}\mu^{\mp}\mathcal{H}$	\mathbf{CC}
$\stackrel{(-)}{\nu_{\mu}}\mathcal{H} ightarrow \stackrel{(-)}{\nu_{\mu}}e^{-}e^{+}\mathcal{H}$	NC
$\stackrel{(-)}{\nu_e}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_e}e^-e^+\mathcal{H}$	CC + NC
$\stackrel{(-)}{\nu_e}\mathcal{H} \to \stackrel{(-)}{\nu_\mu}\mu^{\pm}e^{\mp}\mathcal{H}$	\mathbf{CC}
$(\bar{\nu}_e^{}) \mathcal{H} \rightarrow (\bar{\nu}_e^{}) \mu^- \mu^+ \mathcal{H}$	NC

$$\begin{split} m_{e}, m_{\mu} &\to 0 \\ \sigma &\sim g_{V}^{2} + g_{A}^{2} \qquad (\nu_{\mu} \ e^{+}e^{-}) \\ \sigma &\sim (g_{V} + 1)^{2} + (g_{A} + 1)^{2} \qquad (\nu_{\mu} \ \mu^{+}\mu^{-}) \end{split}$$
 In principle,

Lepton masses break this symmetry

 $g_V \leftrightarrow g_A$ -

Magill, Plestid, 1612.05642 Ballet et al., 1807.10973 Altmannshofer et al, 1912.06765

> this transformation

Relatively small cross section

 $\sigma_{\Psi} \approx 10^{-5} \sigma_{\rm CCOE}$

(Anti)Neutrino	SM Contributions
$(\bar{\nu}_{\mu}^{0}\mathcal{H} ightarrow (\bar{\nu}_{\mu}^{0}\mu^{-}\mu^{+}\mathcal{H})$	CC + NC
$\stackrel{(-)}{\nu_{\mu}}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_{e}}e^{\pm}\mu^{\mp}\mathcal{H}$	\mathbf{CC}
$\stackrel{(-)}{\nu_{\mu}}\mathcal{H} ightarrow \stackrel{(-)}{\nu_{\mu}}e^{-}e^{+}\mathcal{H}$	NC
$\stackrel{(-)}{\nu_e}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_e}e^-e^+\mathcal{H}$	CC + NC
$\stackrel{(-)}{\nu_e}\mathcal{H} \rightarrow \stackrel{(-)}{\nu_\mu}\mu^{\pm}e^{\mp}\mathcal{H}$	\mathbf{CC}
$(\bar{\nu}_e^{}) \mathcal{H} \rightarrow (\bar{\nu}_e^{}) \mu^- \mu^+ \mathcal{H}$	NC

Autumn Meeting - NuStorm — November 23rd, 2023

Yuber F. Perez-G. - IPPP, Durham University

 $g_V \leftrightarrow g_A$

Rates

$$N_{\rm X}^{\psi} = \operatorname{Norm} \times \int dE_{\nu} \, \sigma_{\nu {\rm X}}(E_{\nu}) \frac{d\phi_{\nu}(E_{\nu})}{dE_{\nu}} \epsilon(E_{\nu})$$

 14×10^{21}

Ballet et al., 1807.10973

Exposure = 14×10^{21} POT

Autumn Meeting - NuStorm — November 23rd, 2023

Rates

Assuming a LAr ND for nuSTORM

 14×10^{21}

Ballet et al., 1807.10973

Exposure = 14×10^{21} POT

Autumn Meeting - NuStorm — November 23rd, 2023

Rates

Assuming a LAr ND for nuSTORM

Experiment	Baseline (m)	Total Exposure (POT)	Fiducial Mass (t)	${ m E}_{ u}~({ m GeV})$
SBND	110	$6.6 imes10^{20}$	112	0 - 3
μBooNE	470	$1.32 imes 10^{21}$	89	0 - 3
ICARUS	600	$6.6 imes10^{20}$	476	0 - 3
DUNE	574	$12.81 (12.81) \times 10^{21}$	50	0 - 40
ν STORM	50	14×10^{21}	100	0 - 6

Ballet et al., 1807.10973

Exposure = 14×10^{21} POT

Rates for current/future NDs

	Channel	SBND	$\mu \mathbf{BooNE}$	ICARUS	DUNE ND	ν STORM ND
lat coop yot	Total $e^{\pm}\mu^{\mp}$	10	0.7	1	2993 (2307)	2240
Not seen yet		1	0.1	0.1	391 (299)	3240
lot coop vot	Total e^+e^-	6	0.4	0.7	1007 (800)	1702
Not seen yet		0.2	0.0	0.02	64(49)	1792
	Total $\mu^+\mu^-$	0.4	0.0	0.0	286 (210)	200
		0.3	0.0	0.0	143(108)	200

100 t LAr

Large contributions of diffractive events

Backgrounds?

Goal: Reach suppressions of order $\mathcal{O}(10^{-6} - 10^{-5})$

misID	$\mu^+\mu^- \longrightarrow \nu_\mu CC1\pi^\pm$	misID	Rate
	a^+a^- NIC -0	$\gamma \text{ as } e^{\pm}$	0.05
	$e e \sim NC\pi^{\circ}$	$\alpha \rightarrow \alpha^{+} \alpha^{-}$	0.1 (w/vertex)
	$e^{\pm}\mu^{\mp} \longrightarrow CC\pi^0$	y as e e	1 (no vertex + overlapping)
		$\pi^{\pm} \text{ as } \mu^{\pm}$	0.1
	$CC\gamma = \nu_{\rho}CC\pi^{\pm}$		

- No hadronic activity
- $m_{\mu^+\mu^-}^2 < 0.2 \text{ GeV}^2, \Delta\theta < 20^\circ, \theta_{\pm} < 15^\circ$

A more
careful
analysis is
needed

14

[Channel N_B^{misID}/N_{CC}		$\mathbf{N}_{\mathrm{B}}^{\mathrm{had}}/\mathbf{N}_{\mathrm{CC}}$	$N_{\rm B}^{\rm kin}/N_{\rm CC}$	$\epsilon_{ m sig}^{ m coh}$	$\epsilon_{ m sig}^{ m dif}$ 11
	$e^{\pm}\mu^{\mp}$	$1.67~(1.62)\times 10^{-4}$	$2.68~(4.31)\times 10^{-5}$	$4.40~(3.17) \times 10^{-7}$	0.61 (0.61)	0.39 (0.39)
	e^+e^-	$2.83~(4.19) imes 10^{-4}$	$1.30~(2.41)\times 10^{-4}$	$6.54~(14.1) imes 10^{-6}$	0.48 (0.47)	0.21 (0.21)
	$\mu^+\mu^-$ 2.66 (2.73) × 10 ⁻³ 10.4 (9.		$10.4~(9.75)\times 10^{-4}$	$3.36~(3.10) \times 10^{-8}$	0.66(0.67)	0.17 (0.16)
-					Efficiencies	after cuts
		misID	Hadronic veto	Kinematic cuts		
Autumn	Meeting - Nu	Storm — November 23	rd, 2023	Yuber F. Perez-G IPPP, I	Durham Unive	rsity

BSM in tridents

Anomaly free scenarios: $L_{\alpha} - L_{\beta}$

 $\alpha,\beta = \{e,\mu,\tau\}$

- $\ell\ell\ell$ trident: $\mathcal{H} + \nu_{\alpha} \to \mathcal{H}' + \ell_{\alpha}^{-} + \ell_{\beta}^{+} + \ell_{\beta}^{-}$
- $\nu \ell \ell$ trident: $\mathcal{H} + \nu_{\alpha} \to \mathcal{H} + \nu_{\beta} + \ell_{\gamma}^{+} + \ell_{\delta}^{-}$
- $\nu\nu\ell$ trident: $\mathcal{H} + \nu_{\alpha} \to \mathcal{H}' + \ell_{\alpha}^{-} + \nu_{\beta} + \overline{\nu}_{\beta}$
- $\nu\nu\nu\nu$ trident: $\mathcal{H} + \nu_{\alpha} \to \mathcal{H} + \nu_{\alpha} + \nu_{\beta} + \overline{\nu}_{\beta}$

Bethe-Heitler

Dark-Bremsstrahlung

BSM in tridents

Autumn Meeting - NuStorm — November 23rd, 2023

Large Extra Dimensions

Large Extra Dimensions

Weakness of Gravity might be the result of the existence of extra dimensions 10^{-2} L = 500 m $P(\nu_{\mu} \rightarrow \nu_{e})$ 10^{-3} Point 1 Point 2 10^{-4} Point 3 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.0 1.0 E_{ν} (GeV) 1.0 $L_{\rm ND} = 1 \text{ km}$ $\begin{array}{ccc} 0.8 & 0.6 \\ 0.6 & 0.6 \\ 0.6 & 0.4 \\ 0.7 & 0.6 \\ 0.7 & 0.7$ $L_{\rm FD} = 1300 \, \rm km$ Standard Point 1 Point 2 Point 3 0.0 0 2 3 5 7 1 4 6 E_{ν} (GeV) Maybe neutrino A generalization of steriles masses also "leak" through the extra dim?

 $M_4^2 = M_D^{2+n} (2\pi R)^n$

_							
_	$\{P_a,\nu_i\}$	$\frac{R}{\mathrm{eV}^{-1}}$	$c_i R$	λ^i	$\frac{m_{i,0}^2}{\mathrm{eV}^2}$	$\frac{m_{i,n'}^2}{\mathrm{eV}^2}$	$ W_i^{0n^\prime} ^2$
	$\{P_1, \nu_1\}$	1.9	4.24	0.42	≈ 0	9.3	$9.0 \cdot 10^{-5}$
	$\{P_1, \nu_2\}$	1.9	1.19	2.0	$7.6\cdot 10^{-5}$	0.66	0.0196
_	$\{P_1, \nu_3\}$	1.9	-0.037	0.66	$2.5\cdot 10^{-3}$	0.27	0.0169
	$\{P_2, \nu_1\}$	6.4	-1.1	0.27	$2.5\cdot 10^{-3}$	0.056	$5.9\cdot 10^{-3}$
	$\{P_2, \nu_2\}$	6.4	-1.2	0.25	$2.6\cdot 10^{-3}$	0.066	$3.8\cdot 10^{-3}$
_	$\{P_2, \nu_3\}$	6.4	3.2	1.1	pprox 0	0.64	0.01
	$\{P_3, \nu_1\}$	1.8	0.43	0.42	$1.9\cdot 10^{-4}$	0.37	$4.4\cdot 10^{-3}$
	$\{P_3, \nu_2\}$	1.8	1.0	2.4	$2.6\cdot 10^{-4}$	0.65	0.0361
_	$\{P_3, \nu_3\}$	1.8	0.41	1.7	$2.7\cdot 10^{-3}$	0.37	0.0576

ADD model, hep-ph/9803315

Carena et al,1708.09548

Autumn Meeting - NuStorm — November 23rd, 2023

Large Extra Dimensions

Autumn Meeting - NuStorm — November 23rd, 2023

Large Extra Dimensions

 $\Delta m_{n1}^2 = n^2 / R^2 + 2m_0 n / R$

Highly dependent on systematics!

Detector distance??

Again, having a "clean" flux would help here

Non-neutrino BSM

Additional channels? What could nuSTORM do here?

Axions?

Conclusions

- Unique combination of flavours should help in constraining the $g_A^{\nu e}$, $g_V^{\nu e}$ SM couplings
- There is a vast landscape of BSM models trying to explain different phenomena, like the short baseline anomalies.
- Large flux, low backgrounds and low systematics make nuSTORM the best place to constrain many possible BSM models.
- Flux time dependence?? Handle for some BSM searches??
- Other ideias???

Thanks!