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• Pulses are needed. A constant energy deposition produces no acoustic wave.

• High resolution demands short pulses, e.g., 150 μm requires 100 ns (10 MHz)

• Nearly homogenous dose regions produce very low acoustic frequencies (kHz)

• Nevertheless, success obtained in vitro and in vivo, by various groups

Extremely wide bandwidth 

acoustic sensors required



3

Our ion-acoustic ambition

• In-vivo real-time 3D dose localisation and quantitative mapping, for real-time 

pulse-to-pulse adaptive treatment as the beam is moved around

• Localise the Bragg peak (submillimetre accuracy possible), to avoid damage to healthy 

tissue and under-dosing of the tumour.

• Measure the deposited-energy distribution in the tissue, preferably on a pulse-by-pulse 

basis.

• Simultaneously image with ultrasound and photoacoustics, registered to planning 

CT/MRI - track tissue motion, image anatomy, perfusion, microvasculature, hypoxia, tissue 

stiffness, speed of sound, molecular biomarkers and dose enhancement distribution from 

molecularly targeted dose enhancers.

• Suitable for organs with acoustic access: breast, prostate, liver, pancreas, pelvic, head 

and neck, etc. (perhaps eventually brain).

• Enable preclinical radiobiology research to provide the knowledge needed to take full 

advantage of the new accelerator, and for its optimal clinical use.

• Especially applicable to mini/micro-beam and FLASH irradiation.



4
Our main challenges

• Very weak signals

• LhARA technology generates 10 - 40 ns pulses

• Massively parallel ultrasound electronics and transducer arrays, and front-end compressive sensing

• Techniques described below will also enhance signal to noise ratio

• Matching signal frequency content to ultrasound transducers

• Novel acoustic beamforming and transducer arrays take advantage of LhARA to adjust the beam size

• Prior knowledge of expected dose distribution

• Ultrasound transducers must permit imaging and PB access, without an operator

• For some organs (e.g. breast, thyroid, prostate), suitable 3D automated scanning is already used clinically

• Current work around the world to develop conformable arrays in the form of inter-communicating patches

• The acoustic properties for which compensation is needed, for spatially accurate 

and quantitative dose, are patient specific

• Speed of sound, attenuation and Grüneisen coefficient imaging are being developed for diagnostic imaging

• Ultrasound contrast microbubbles can act as beacon signals for aberration and attenuation correction
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Our approach

• Modelling of proton/ion beam, transport, energy deposition, 

thermoacoustic generation, acoustic propagation, sensing 

and dose-map reconstruction

- study variables (e.g., beam size, pulse length, kinetic energy, 

particle type, dose per pulse, ultrasound sensor positions and 

characteristics, reconstruction method) 

=> predict dose imaging capabilities

=> define ultrasound sensor and system requirements 

• Early experiments to validate the modelling – existing source

• Build prototype preclinical demonstrator system

• Bring together with LhARA prototype

• Conduct preclinical experiments to generate radiobiological 

knowledge

• Refine and repeat, translate to clinical scale,  …

Smart phantom system for 

verifying the simulation and 

dose/range estimates

Beam

High-

throughput 

biological 

sample 

holder

Acoustic sensor array

Dose maps

LhARA beams



6

Digital simulation studies
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simulation of the water phantom
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8Binned energy deposition profiles
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9simulation - source pressure 
distribution due to deposited proton energy



10Acoustic Wave Propagation

Kapton foil

Air Water



11Acoustic sensor geometry and location in 
relation to the proton energy deposition
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12Pressure distribution reconstructed using iterative time 
reversal – comparison with the source pressure

Reconstruction Source pressure



13Axial profile through the reconstructed pressure 
distribution – iterative time reversal convergence
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Experimental simulation studies



15
Preliminary photoacoustic “experimental simulation”  

Monte Carlo simulation

3-D dose distribution

Threshold and tessellate 3-D surface

3-D print to produce mould

Optically absorbing gel phantom in the shape of the deposited dose distribution

Image using a photoacoustic system

Evaluate received acoustic frequencies and reconstructed images in terms of analytical 

predictions and compare with k-Wave predictions
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Example mould design and final photoacoustic phantom 

of thresholded simulated dose distribution (70 MeV)

Two halves of mould for deposited 

dose distribution at 5% threshold

Background 

(TiO2 in gelatine)

Beam insert (India 

ink pigmented)

Halve the phantom for deposited 

dose distribution at 40% threshold



17Photoacoustic imaging system
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Example photoacoustic images (5%)

Surface rendering of 3D 

reconstruction

Stack of cross-sectional 

reconstructions



19Radial acoustic signals received from position 

of the Bragg peak by sensor element 128

Computer (IO) simulation Experimental (PA) simulation
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Conclusion

Simulation appears to be behaving well (analysis ongoing)

The next steps:

1) Validate the simulation against an ionacoustic (rather than 

photoacoustic) experiment with a pulsed proton source

2) Use the simulation to design the ionacoustic system for preclinical 

LhARA experiments

3) Build the ionacoustic system, test and demonstrate in a

proof-of-principle radiobiological experiment
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