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The First Detection—GW150914

| | |

10 __LIGO Hanford Data (shifted)

g(s) f”*‘l‘u \p /\ " ’A\ "‘\\ ’!'
0.5 W \ |

-1.0

Strain (10%")

_LIGO Livingston Data
|

| |
0.30 0.35 0.40
Time (sec)

|
0.45
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detection
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From Abbott et al, arXiv: 1602.03837
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Search Results
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Using optimal matched filtering, we search 25 hours of data from the LIGO 40-m prototype laser
interferometric gravitational-wave detector for gravitational-wave chirps emitted by coalescing binary
systems within our Galaxy. This is the first test of this filtering technique on real interferometric data.

An upper limit_on_the rate R of neutron star binary inspirals in our Galaxy is obtained: with 90%
conﬁdence Similar experiments with LIGO interferometers will provide constraints on
the population O TighT binary neutron star systems in the Universe.

PACS numbers: 95.85.Sz, 04.80.Nn, 07.05.Kf, 97.80.—d
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We use 373 hours ( = 15 days) of data from the second science run of the LIGO gravitational-wave
detectors to search for signals from binary neutron star coalescences within a maximum distance of
about 1.5 Mpc, a volume of space which includes the Andromeda Galaxy and other galaxies of the Local
Gmup of galaxies. This analysis requires a signal to be found in data from detectors at the two LIGO
sites, according to a set of coincidence c The background (accidental coincidence rate) is
determined from the data and is used to judge the significance of event candidates. No inspiral
gravitational-wave events were 1dentified in our search. Using ich includes the
Local Group, we establish an upper limit of less tha47 inspiral events per year per Milky Waydquivalent
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GW150914: First results from the search for binary black hole
coalescence with Advanced LIGO

B. P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 9 March 2016; published 7 June 2016)

On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report
the results of a matched-filter search using relativistic models of compact-object binaries that recovered
GW150914 as the most significant event during the coincident observations between the two LIGO
detectors from September 12 to October 20, 2015 GW 150914 was observed with a matched-filter signal-to-
noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a
significance greater than 5.1 o.

DOI: 10.1103/PhysRevD.93.122003
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ldentifying the signal: Matched filtering

Data Waveform Sensitivity

Figures from Abbott et al,
“"GW151226: Observation of
Gravitational Waves from a
22-Solar-Mass Binary Black
Hole Coalescence”, 2016
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Template Bank

Ix1| < 0.9895, |x2| < 0.05
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From Abbott et al, arXiv: 1602.03839
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Matched filtering results

ESimuIated data
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From Babak et al, arXiv: 1208.3491
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https://arxiv.org/abs/1208.3491

Signal Consistency tests

* A loud glitch will produce a high
SNR, even if it doesn’t match the
signal

* Split the signal into N parts, with

equal power in each, and calculate
SNR for each part

* x> test to verify that SNR correctly
distributed

Introduced in B. Allen, arXiv: gr-qc/0405045
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https://arxiv.org/abs/gr-qc/0405045

Event Ranking

+++ Sim. signals in software GW150914
Y Trl g g e rS I n ea C h ooo Sim. signals in detector LVT151012
-+« Background

detector are
ranked based on a
“re-weighted”

SNR
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From Abbott et al, arXiv: 1602.03839 3
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Coincidence

* Require a signal in all
detectors consistent with
an astrophysical source

* Consistent time of arrival
and amplitude/phase of
signal in all detectors

“x" polarization “+" polarization RMS sensitivity
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Coincidence

* Require a signal in all
detectors consistent with
an astrophysical source

* Consistent time of arrival
and amplitude/phase of
signal in all detectors

GW150914
LVT151012
GW151226

¢y — ¢, (radians)

From Nitz et al, arXiv: 1705.01513
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https://arxiv.org/abs/1705.01513

Binary Coalescence Search for GW150914

= Search from 1 to 99 solar masses; total mass, 100 solar masses and
dimensionless spin < 0.99

= 250,000 waveforms are used to cover the parameter space

» Calculate matched filter SNR as function of time p(t) and identify maxima
and calculate %2 to test consistency with matched template

= Apply detector coincidence within 15 msec.
= Calculate quadrature sum p_ of the signal to noise of each detector

= Background: Time shift and recalculate 107 times equivalent to 608,000
years.

= Significance: GW150914 has p_= 23.6 corresponding to false alarm rate less
than 1 per 203,000 years or significance > 5.1 ¢
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The real
detection
plot
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Detection statistic, p,.
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Other Issues



Single Detector Events

wv*GraceDB Public Alerts ~ Latest Search Documentation Login

https://gracedb.ligo.org/

04 Significant Detection Candidates: 59 (70 Total - 11 Retracted)

O4 Low Significance Detection Candidates: 1254 (Total)

Show All Public Events

Page 1 of 5. next last »

EVENT ID (A-2)

Event ID Possible Source (Probability) Significant Location Comments

GCN Circular
Nov. 8, 2023
u >99%) uery . per .04 years
$231108 BBH (>99%) Q 1 100.04
12:51:42 UTC
Notices | VOE

GCN Circular
Nov. 4, 2023 \
S231104ac BBH (>99%) Query 1 per 100.04 years
13:34:18 UTC
Notices | VOE

GCN Circular
Nov. 2, 2023 1 per 5.4281e+14
S$231102w BBH (>99%) Query
07:17:36 UTC years
Notices | VOE

GCN Circular
BNS (93%), NSBH (6%), Terrestrial Oct. 30, 2023
S$231030av Query 1.3301 per year RETRACTED
(1%) 12:51:11 UTC *
Notices | VOE

GCN Circular
Oct. 29, 2023
S$231029y BBH (>99%) T1E08 e Query 1 per 146.45 years
o Notices | VO

GCN Circular -
Oct. 28, 2023 1 per 4.1513e+22
S231028bg  BBH (>99%) 00 I Query :
15:30:06 U years
Notices | VOE



https://gracedb.ligo.org/

Single Detector
Events

e Difficult to evaluate
significance
* Strictly, limited to

1/T, where T is
observing time

e Second observed
BNS, GW190425, was
seen in 1-detector

1 i | L L L L 1 L L |
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LLO, GW170817
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From Abbott et al, arXiv: 2001.01761 20
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Glitches mid-signal: GW170817

Time (seconds) Normalized amplitude
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Non-stationarity during signal: GW200129

* First signal with
observable precession

(see Hannam et al, arXiv: 2112.11300)

——— Maximum Likelihood BBH Template ——

* Presence of non-
stationarity complicates
identification of
precession contribution to

Wa Vefo rm . . Time in seconds from 1264316116.435 GPS

(see Payne et al, arXiv: 2206.11932,
Macas et al, in preparation)

From Hannam et al, arXiv: 2112.11300
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Unmodelled searches

* No specific waveform model:
Identifies coincident excess power
in time-frequency representations
from all detectors (f <1 kHz and t <
few seconds)

* Require consistency with two
gravitational-wave polarizations

 Reconstruct waveform in both
detectors using multi-detector
maximum likelihood method

See Klimenko et al, arXiv: 0802.3232

From Sutton et al, arXiv: 0908.3665 .,
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Generic transient search
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Summary

* Analysis of GW data began long
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-~ M aJ or Effo rt re q U | Fe d to === Background excluding GW150914 Y

o o . . GW150014
minimize impact of non-

stationary noise

* Coincidence between detectors is
probably the most important

* "“Signal consistency tests” and re-
weighting of events

* Use astrophysical expectations
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* Knowing what you're looking ) 12 L
for helps, but it's not essential Detection statistic. p
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