Atomic Interferometry: R&D and Science Targets

Concept of atom interferometry AION project R&D progress Site plans & investigations Mergers of Intermediate black holes Interpretation and extrapolation of PTA data

> John Ellis KING'S LONDON

AEDGE, arXiv:1908.00802, AION, arXiv:1911.11755, AION, arXiv:2305.20060, JE, Schneider & Buchmueller, arXiv:2306.17726 Terrestrial VLBAI, arXiv:2310.08183

Gravitational Wave Spectrum

- Gap between ground-based optical interferometers & LISA
 - Formation of supermassive black holes (SMBHs)
 - Supernovae? Phase transitions? ...
- Atom interferometry?

Effect of Gravitational Wave on Atom Interferometer

Effect of Dark Matter on Atom Interferometer

Clock Transition in ⁸⁷Sr

Long-lived state, can excite multiple times Large momentum transfers, well-separated paths

Alon Atomic Multi-Gradiometer

Multiple atomic interferometers in the same vertical shaft, manipulated with same laser beam: Eliminate laser noise, minimize gravity gradient noise (direct effect on atoms of earth motion). Many laser interactions to generate large momentum transfers

AION Collaboration

L. Badurina, S. Balashov², E. Bentino³, D. Blas¹, J. Boehm², K. Bongs, A. Beniwol¹
D. Bortoleuce of Powcock⁵, W. Bowden^{6,*}, C. Brew, O. Buchmueller⁶, J. Coleman, J. Carlton
G. Elertas, J. Ellis¹, ⁴, C. Foot³, V. Gibson⁷, M. Haehnelt⁷, T. Harte⁷, R. Hobson^{6,*}, M. Holynski, A. Khazov², M. Langlois⁴, S. Lelleuch⁴, Y.H. Lien⁴, R. Maiolino⁷,
P. Majewski², S. Malik⁶, J. March-Russell, C. McCabe, D. Newbold², R. Preece³, B. Sauer⁶, U. Schneider⁷, I. Shipsey³, Y. Singir, M. Tarbutt⁶, M. A. Uchida⁷, T. V-Salazar², M. van der Grinten², J. Vossebeld⁴, D. Weatherill³, I. Wilmut⁷, J. Zielinska⁶

¹Kings College London, ²STFC Rutherford Appleton Laboratory, ³University of Oxford, ⁴University of Birmingham, ⁵University of Liverpool, ⁶Imperial College London, ⁷University of Cambridge

Network with MAGIS project in US

MAGIS Collaboration (Abe et al): arXiv:2104.02835

AION – Staged Programme

- AION-10: Stage 1 [year 1 to 3]
- 1 & 10 m Interferometers & site investigation for 100m baseline
 Initial funding from UK STFC
- AION-100: Stage 2 [year 3 to 6]
- 100m Construction & commissioning
- AION-KM: Stage 3 [> year 6]
- Operating AION-100, preparing 1 km & planning for beyond
- AION-SPACE (AEDGE): Stage 4 [after AION-km]
- Space-based version

Laboratory Installations

AION Collaborationn [Stray, ..., JE et al], arXiv:2305.20060

Interference Fringes from Rabi Oscillations

Atomic analogue of Mach-Zehnder optical interferometer

Using 689 nm transition in Sr

AION Collaboration

AION Towards Large Momentum Transfers

AION-10 @ Beecroft building, Oxford Physics

10m

- New purpose-built building (£50M facility)
- AION-10 on basement level with 14.7m headroom (stable concrete construction)
- World-class infrastructure
- Experienced Project Manager:
- Engineering support from RAL (Oxfordshire)

(22±0.1)°C

100m and 1km shafts @ Boulby

Shaft 3: 180m:

Space use in shaft? Proximity to sea shore? Water extraction tube? Magnetic environment?

Shaft 1: 1.1km Operational access shaft Space use in shaft? Effects of physical activities? Air flow?

140m Access Shaft @ CERN AION

Gravity Gradient Noise @ CERN AION

Porta Alpina: A possible site for a large terrestrial atom interferometer?

A pair of 800m vertical shafts down to the Gotthard base railway tunnel, with a 1km horizontal access tunnel

Gotthard Access Shafts

Gotthard Tunnel Layout Alow

Gravitational Waves from IMBH Mergers AION

Probe formation of SMBHs Synergies with other GW experiments (LIGO, LISA), test GR

adurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

How to Make a Supermassive BH?

SMBHs from mergers of intermediate-mass BHs (IMBHs)?

SNR = 8 Sensitivities to GWs from Mergers

In the lighter regions between the dashed and solid lines the corresponding detector observes only the inspiral phase.

GGN Mitigation for AION-km

Assuming GGN level and rock properties similar to CERN studies for AION-100

Searching for IMBH Mergers

GGN mitigated using multiple interferometers; further mitigation possible with external seismometer network, to be studied

Gravity Gradient Noise Deep Underground

SURF measurements close to Peterson NLNM

Can mitigate by Wiener filtering using array of seismometers

Coughlin, Harms, Christensen, Dergachev, DeSalvo, Kandhasamy & Mandic: arXiv:1403.7756

Precision of Merger Prediction

0.2

AION-km

more precise than

LISA

(200, 800) solar masses at z = 4

Precision of Merger Prediction

 $\Delta z/z$

AEDGE

more precise than

LISA

(200, 800) solar masses at z = 4

Synergies with Higher-Frequency Alon Experiments

Inspiral waveforms for ground-/space-based detectors

Synergies with Higher-Frequency Alon Experiments

Predictions for future LVK/ET/CE measurements:

Direction, distance, time of merger Prepare for multi-messenger observations

E & Vaskonen: arXiv:2003.13480

Pulsar Timing Arrays

NANOGrav & other PTAs see nanoHz GW signal

The Biggest Bangs since the Big Bang?

BH Merger Rate Estimate

BH merger rate $R_{\rm BH}$ $\frac{\mathrm{d}R_{\rm BH}}{\mathrm{d}m_1\mathrm{d}m_2} \approx p_{\rm BH} \frac{\mathrm{d}M_1}{\mathrm{d}m_1} \frac{\mathrm{d}M_2}{\mathrm{d}m_2} \frac{\mathrm{d}R_h}{\mathrm{d}M_1\mathrm{d}M_2}$

where R_h is halo merger rate calculated using Extended Press-Schechter formalism,

$$p_{\rm BH} \equiv p_{\rm occ}(m_1) p_{\rm occ}(m_2) p_{\rm merg}$$

is merger probability, and

strength of IPTA signal can be fitted by constant $p_{\rm BH}$

Extension of Fits to Higher Frequencies AION

Summary

- Atom interferometry is a promising new technology
- AION Collaboration making progress with R&D
- Advanced plans for 10-m prototype detector @ Oxford, sites for 100-m and km including Boulby, CERN & Switzerland being investigated
- Exploring sensitivity including effects of (mitigated) GGN
- Atom interferometers have interesting stand-alone science, also potential synergies with laser interferometers
- PTA data evidence for a SGWB that is potentially observable by atom interferometers
 AEDGE, arXiv:1908.00802,

AEDGE, arXiv:1908.00802, AION, arXiv:1911.11755, AION, arXiv:2305.20060, JE, Schneider & Buchmueller, arXiv:2306.17726, Terrestrial VLBAI, arXiv:2310.08183