
Computational lattice design

Numerical methods II

Dr Robert Apsimon
r.apsimon@lancaster.ac.uk

mailto:r.apsimon@lancaster.ac.uk


In this lecture

• We will now look at the considerations for writing your own tracking code.

• While there are plenty of tracking codes available, it is good to understand 
how to write your own.
– Aside from giving a good conceptual understanding, codes written by 

someone else don’t always do exactly what you want it to do…
• ASTRA changes your coordinate system if you use dipoles
• MAD/MADX doesn’t allow you to import field maps
• PARMILA/PARMELA is difficult to use and computationally limited
• …



General strategy for particle tracking

1. Import/generate your particle distribution

2. Import/generate your field map or beam line

3. Integrate your trajectory along the field map/beam line

• Conceptually, writing a tracking code is much easier than it sounds
– There are, of course, plenty of little fiddly bits, but nothing too strenuous!



Generating a particle distribution

• You should all be familiar with the Twiss
parameters.

• From this, the beam ellipse can be written
as:
𝛾𝛾𝑥𝑥2 + 2𝛼𝛼𝑥𝑥𝑥𝑥′ + 𝛽𝛽𝑥𝑥′2 = 𝜀𝜀𝑔𝑔 

• Where 𝜀𝜀𝑔𝑔 = 𝜀𝜀𝑁𝑁
𝛽𝛽𝛽𝛽 𝑟𝑟𝑟𝑟𝑟𝑟

• Generating a random particle distribution for a rotated ellipse like this is 
difficult, what would be better is to generate a particle distribution for a 
circle.
– This is essentially what we do. We define the particle distribution in 

normalised phase space coordinates and transform it into actual phase 
space coordinates.



Generating a particle distribution

• If we take the transformation:

𝑥𝑥
𝑥𝑥′ =

𝛽𝛽 0

− 𝛼𝛼
𝛽𝛽

1
𝛽𝛽

𝑋𝑋𝑁𝑁
𝑋𝑋𝑁𝑁′

 

• Then the beam ellipse:
𝛾𝛾𝑥𝑥2 + 2𝛼𝛼𝑥𝑥𝑥𝑥′ + 𝛽𝛽𝑥𝑥′2 = 𝜀𝜀𝑔𝑔 
Turns into:
𝑋𝑋𝑁𝑁2 + 𝑋𝑋𝑁𝑁′

2 = 𝜀𝜀𝑔𝑔 

• So now we can generate our normalised phase space distribution easily and 
the real phase space coordinates are given as:

𝑥𝑥 = 𝛽𝛽𝑋𝑋𝑁𝑁

𝑥𝑥′ =
−𝛼𝛼𝑋𝑋𝑁𝑁 + 𝑋𝑋𝑁𝑁′

𝛽𝛽



Generating a particle distribution

• There are many different particle
distributions we could generate
– Most commonly a Gaussian
– Could do uniform distribution

• This is slightly more complicated

• Gaussian:
– Let 𝑋𝑋𝑁𝑁 and 𝑋𝑋𝑁𝑁′ be Gaussian distributed arrays of random numbers with a 

standard deviation of 𝜀𝜀𝑔𝑔
𝑥𝑥 = 𝛽𝛽𝑋𝑋𝑁𝑁

𝑥𝑥′ =
−𝛼𝛼𝑋𝑋𝑁𝑁 + 𝑋𝑋𝑁𝑁′

𝛽𝛽



Generating a particle distribution

• Uniform:
– Let m and n be uniformly distributed random in the range of [0, 1]

𝑟𝑟 = 𝜀𝜀𝑔𝑔𝑚𝑚
𝜃𝜃 = 2𝜋𝜋𝜋𝜋

– Then
𝑋𝑋𝑁𝑁 = 𝑟𝑟 cos𝜃𝜃
𝑋𝑋𝑁𝑁′ = 𝑟𝑟 sin𝜃𝜃

– Why do we need sqrt(m) for r?



Generating a particle distribution

• We can in fact create any distribution we want with just 3 arrays uniformly 
distributed random numbers (m, n, p):
– Assume our required distribution is a function 𝑓𝑓 𝑥𝑥, 𝑥𝑥′

m is a random number in the range 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
n is a random number in the range 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚′ , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚′

p is a random number in the range 0, 1

– If 𝑝𝑝 ≤ 𝑓𝑓 𝑚𝑚,𝑚𝑚
max 𝑓𝑓 𝑚𝑚,𝑚𝑚′

, then 𝑥𝑥 = 𝑚𝑚, 𝑥𝑥′ = 𝜋𝜋 and this is added to the particle 

distribution
– Otherwise m, n, p are rejected and we generate new values for m, n, p

– We continue this algorithm until we have enough particles in our 
distribution.



Generating/importing a field map

• A field map can be described in different ways, depending on what you need.
– If an analytical field distribution exists and can be easily described then a 

field map can be considered as a function:
• E.g. quadrupoles, dipoles…

– For more complicated systems, we need to define the electric and 
magnetic fields at specific points
• This can be 1-, 2-, 3- or even 4D

–4D is very rare and much more difficult as the amount of data grows 
rapidly with the number of dimensions!

• The obvious downside with discrete field maps is that you lose 
accuracy between grid points.



Generating/importing a field map

• Formulaic field maps
– Most tracking codes have commands to for common classes of magnetic 

and electric elements:
• Dipole, quadrupole, multipole, kickers…
• As we saw in the previous lecture, if we have a formula to describe the 

magnetic and electric fields, we can easily define an equation of 
motion (which we can either solve analytically or numerically):

�̈�𝑥
�̈�𝑦
�̈�𝑧

=
𝑞𝑞
𝛾𝛾𝑚𝑚

𝐸𝐸𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑦𝑦𝐵𝐵𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡
𝐸𝐸𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑚𝑚𝐵𝐵𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑧𝑧𝐵𝐵𝑚𝑚 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡
𝐸𝐸𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑚𝑚𝐵𝐵𝑦𝑦 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑦𝑦𝐵𝐵𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡

• Later we will come back to this equation



Generating/importing a field map

• Discrete field maps
– Most codes will also allow you to import a field map as a text file

• Each code will have its own format for the text file, but they all require 
the same information:

–Positions in x, y, z
–Real and imaginary components of the field in x, y and z
–Usually the electric (E) and magnetic (H) fields are imported as 

separate files
(Recall 𝐵𝐵 = 4𝜋𝜋 × 10−7𝐻𝐻)

– Since discrete field maps miss information between the grid points, we 
need to interpolate between points in general.



Interpolation of a field map

• As we only have limited data, we need to find a way
to estimate the field between points:
– Linear interpolation

• Simplest approach, good for slowly varying fields

𝐸𝐸 𝑥𝑥 = 1 −
𝛿𝛿
𝑑𝑑𝑥𝑥

𝐸𝐸𝑚𝑚 +
𝛿𝛿
𝑑𝑑𝑥𝑥

𝐸𝐸 𝑚𝑚+1

– Polynomial interpolation
• Similar to linear interpolation, but requires more data points
• Better accuracy, but more computationally expensive

– Spline fitting
• High accuracy, but computationally expensive, especially for 3D 

interpolation
• Most commonly Bezier curves (plenty of information about these 

online)

En E(n+1)

dx

𝛿𝛿



Bezier curves

• Bezier curves are at the core of almost all 
spline fitting.
– Let’s start by thinking about a 2nd order 

Bezier curve:
– Define 3 points, A, B and C
– Draw a line from A to B (L1), and B to C (L2)
– We will define a parameter t, such that 

when it is zero, we are at A on L1 and B on 
L2.

– Now draw a line (L3) from L1(t) to L2(t)
– The point L3(t) along our new line describes 

our 2nd order Bezier curve



Bezier curves

• Writing this all out as equations:
𝑥𝑥𝐵𝐵 𝑡𝑡 = 1 − 𝑡𝑡 2𝑥𝑥0 + 2𝑡𝑡 1 − 𝑡𝑡 𝑥𝑥1 + 𝑡𝑡2𝑥𝑥2
𝑦𝑦𝐵𝐵 𝑡𝑡 = 1 − 𝑡𝑡 2𝑦𝑦0 + 2𝑡𝑡 1 − 𝑡𝑡 𝑦𝑦1 + 𝑡𝑡2𝑦𝑦2

• Now increase the order of the Bezier curve, 
we need more points, so an nth order Bezier 
curve needs n+1 points
– We use these to generate n generations of 

Bezier curves (1st order curves are lines!).
– The functional form of the nth order Bezier 

curve forms a binomial expansion:

𝑃𝑃𝐵𝐵 𝑡𝑡 = �
𝑘𝑘=0

𝑚𝑚
𝜋𝜋
𝑘𝑘 1 − 𝑡𝑡 𝑚𝑚−𝑘𝑘𝑡𝑡𝑘𝑘𝑃𝑃𝑘𝑘



Bezier curves

• Writing this all out as equations:
𝑥𝑥𝐵𝐵 𝑡𝑡 = 1 − 𝑡𝑡 2𝑥𝑥0 + 2𝑡𝑡 1 − 𝑡𝑡 𝑥𝑥1 + 𝑡𝑡2𝑥𝑥2
𝑦𝑦𝐵𝐵 𝑡𝑡 = 1 − 𝑡𝑡 2𝑦𝑦0 + 2𝑡𝑡 1 − 𝑡𝑡 𝑦𝑦1 + 𝑡𝑡2𝑦𝑦2

• While Bezier curves may have a simple looking 
form, they can describe very complicated 
shapes in a computationally efficient manner.
– However, a Bezier curve can never perfectly 

describe a circle (I’ll leave that as an 
exercise for you to find out why)

• As we move to higher and higher dimensions, 
any spline fitting method becomes 
computationally expensive and something to 
note for any tracking code.



Integrating trajectories

• So far, we have looked at:
– Generating particle distributions
– Field maps and interpolation

• Now we need to move on to figuring out the particles’ trajectories through 
our system.
– Recall from a few slides ago, we said that the equation of motion we get 

is:

�̈�𝑥
�̈�𝑦
�̈�𝑧

=
𝑞𝑞
𝛾𝛾𝑚𝑚

𝐸𝐸𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑦𝑦𝐵𝐵𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡
𝐸𝐸𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑚𝑚𝐵𝐵𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑧𝑧𝐵𝐵𝑚𝑚 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡
𝐸𝐸𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑚𝑚𝐵𝐵𝑦𝑦 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑦𝑦𝐵𝐵𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡

– While this is true, for relativistic systems, this is not the most appropriate 
method.



Integrating trajectories

�̈�𝑥
�̈�𝑦
�̈�𝑧

=
𝑞𝑞
𝛾𝛾𝑚𝑚

𝐸𝐸𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑦𝑦𝐵𝐵𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡
𝐸𝐸𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑚𝑚𝐵𝐵𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑧𝑧𝐵𝐵𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡
𝐸𝐸𝑧𝑧 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑣𝑣𝑚𝑚𝐵𝐵𝑦𝑦 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑣𝑣𝑦𝑦𝐵𝐵𝑚𝑚 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡

• This method relies on us using position and velocity, but in relativistic 
systems, 𝑣𝑣 ≤ 𝑐𝑐
– Therefore, as we accelerate our particles, the increase in velocity gets 

smaller.
• A numerical error could push the velocity over the speed of light and 

the tracking code would break down.
– If we remember the Lorentz force:

𝐹𝐹 = 𝑞𝑞 𝐸𝐸 + 𝑣𝑣 × 𝐵𝐵 =
𝑑𝑑𝑝𝑝
𝑑𝑑𝑡𝑡

• Although the velocity change varies, for a given force, the momentum 
increases linearly with time!



Integrating trajectories

• The first thing we need to do is describe all velocity-related variables in terms 
of momentum. It’s useful to remember:

𝑝𝑝𝑐𝑐 = 𝛽𝛽𝛾𝛾𝑚𝑚𝑐𝑐2
𝑝𝑝𝑘𝑘𝑐𝑐 = 𝛽𝛽𝑘𝑘𝛾𝛾𝑚𝑚𝑐𝑐2
𝐸𝐸 = 𝛾𝛾𝑚𝑚𝑐𝑐2
𝐸𝐸2 − 𝑝𝑝2𝑐𝑐2 = 𝑚𝑚2𝑐𝑐4

• Where 𝑝𝑝𝑘𝑘 means the momentum in the k-direction
• Note that in here 𝑐𝑐 = 1 if we are working in natural units (elsewhere in the 

tracking code it won’t be, which is a common cause of errors that even I fall 
foul of!).
– To avoid this confusion, we will ignore the c’s and rewrite these as

𝑝𝑝 = 𝛽𝛽𝛾𝛾𝑚𝑚
𝑝𝑝𝑘𝑘 = 𝛽𝛽𝑘𝑘𝛾𝛾𝑚𝑚
𝐸𝐸 = 𝛾𝛾𝑚𝑚
𝐸𝐸2 − 𝑝𝑝2 = 𝑚𝑚2



Integrating trajectories

𝑝𝑝 = 𝛽𝛽𝛾𝛾𝑚𝑚
𝑝𝑝𝑘𝑘 = 𝛽𝛽𝑘𝑘𝛾𝛾𝑚𝑚
𝐸𝐸 = 𝛾𝛾𝑚𝑚
𝐸𝐸2 − 𝑝𝑝2 = 𝑚𝑚2

• We will now use these to help us write velocity in terms of momentum:

𝑣𝑣𝑘𝑘 =
𝑝𝑝𝑘𝑘𝑐𝑐
𝐸𝐸

=
𝑝𝑝𝑘𝑘𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2

• Note: in this equation, 𝒄𝒄 = 𝟑𝟑 × 𝟏𝟏𝟏𝟏𝟖𝟖 which is subtle but very important!



Integrating trajectories

• Finally, we can rewrite our equation of motion into a more appropriate form:
𝑑𝑑𝒑𝒑
𝑑𝑑𝑡𝑡

= 𝑞𝑞 𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩 = 𝑞𝑞 𝑬𝑬 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝒑𝒑 × 𝑩𝑩 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡

• The charge is given in units of electrons, so for electrons or protons, we can 
take it to be -1 or +1 respectively, allowing us to simplify our equation to:

̇𝑝𝑝𝑚𝑚
̇𝑝𝑝𝑦𝑦
̇𝑝𝑝𝑧𝑧

=

𝐸𝐸𝑚𝑚 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝑝𝑝𝑦𝑦𝐵𝐵𝑧𝑧 − 𝑝𝑝𝑧𝑧𝐵𝐵𝑦𝑦

𝐸𝐸𝑦𝑦 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝑝𝑝𝑧𝑧𝐵𝐵𝑚𝑚 − 𝑝𝑝𝑚𝑚𝐵𝐵𝑧𝑧

𝐸𝐸𝑚𝑚 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝑝𝑝𝑚𝑚𝐵𝐵𝑦𝑦 − 𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚

• For simplicity, I will just use the vector form of this equation from now on, 
but please not that in reality it’s a set of 3 coupled differential equations.



Integrating trajectories – simplest integrator

Δ𝒑𝒑
Δ𝑡𝑡

≈ �̇�𝒑 = 𝑬𝑬 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝒑𝒑 × 𝑩𝑩

• We will assume that we are dealing with a system that is either DC (e.g. 
dipole magnet) or single frequency (e.g. RF cavity), so we can pull out the 
time dependence as:

Δ𝒑𝒑
Δ𝑡𝑡

≈ 𝑬𝑬 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝒑𝒑 × 𝑩𝑩 𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖

• We will use our field maps and interpolation to estimate the electric and 
magnetic fields (usually the magnetic field is given as 𝐻𝐻 = 𝐵𝐵

𝜇𝜇0
⇒

𝐵𝐵 = 4𝜋𝜋 × 10−7𝐻𝐻)
𝑝𝑝 𝑚𝑚+1 − 𝑝𝑝𝑚𝑚

𝛿𝛿𝑡𝑡
≈ 𝐸𝐸𝑚𝑚 +

𝑐𝑐

𝑝𝑝𝑚𝑚2 + 𝑚𝑚2
𝑝𝑝𝑚𝑚 × 𝐵𝐵𝑚𝑚 𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛



Integrating trajectories – simplest integrator

𝒑𝒑 𝑚𝑚+1 − 𝒑𝒑𝑚𝑚
𝛿𝛿𝑡𝑡

≈ 𝑬𝑬𝑚𝑚 +
𝑐𝑐

𝑝𝑝𝑚𝑚2 + 𝑚𝑚2
𝒑𝒑𝑚𝑚 × 𝑩𝑩𝑚𝑚 𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛

• Rearranging, this gives us:

𝒑𝒑 𝑚𝑚+1 ≈ 𝒑𝒑𝑚𝑚 + 𝛿𝛿𝑡𝑡 𝑬𝑬𝑚𝑚 +
𝑐𝑐

𝑝𝑝𝑚𝑚2 + 𝑚𝑚2
𝒑𝒑𝑚𝑚 × 𝑩𝑩𝑚𝑚 𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛 = 𝒑𝒑𝑚𝑚 + 𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑭𝑭𝑚𝑚𝛿𝛿𝑡𝑡

𝒗𝒗𝑚𝑚 =
𝒑𝒑𝑚𝑚𝑐𝑐

𝑝𝑝𝑚𝑚2 + 𝑚𝑚2

𝒗𝒗 𝑚𝑚+1 =
𝒑𝒑 𝑚𝑚+1 𝑐𝑐

𝑝𝑝 𝑚𝑚+1
2 + 𝑚𝑚2

𝒙𝒙 𝑚𝑚+1 = 𝒙𝒙𝑚𝑚 +
𝒗𝒗𝑚𝑚 + 𝒗𝒗 𝑚𝑚+1

2
𝛿𝛿𝑡𝑡

• This method is called an Euler integrator
• Note: 𝛿𝛿𝑡𝑡 is called the timestep



Integration methods

• Integrator order: this refers to order of the numerical error
– E.g. an Euler integrator is a 1st order integrator, so it has errors that are 2nd 

order or higher.
– Some integrators can limit the maximum error to a certain order, while 

others allow errors to propagate and grow over time.
• Symplectic integrators: the total energy of a system is conserved, which in 

turn conserves the phase space emittance
– Non-symplectic integrators can lose or gain energy over many iterations, 

but this is only really an issue if we want to track particles for very long 
times.

• If we want to improve our tracking accuracy, we can:
– Reduce the timestep
– Increase the integrator order



Most common integrators

• Euler integrator:
– Very basic integrator, but very poor accuracy, almost never used

• 4th order Runge-Kutta integrator:
– Quite easy to set up, good accuracy, almost always the method of choice
– Non-symplectic, so not appropriate for long-term simulations
– RK integrators can come in higher orders, but RK4 is most popular.

• Leap frog algorithms:
– Describes a class of methods of different order, can be symplectic or not.
– Position is evaluated at the timesteps, velocity is between timesteps.
– Velocity calculations prone to divergences, which is bad for relativistic 

applications!
– The Boris “push” algorithm is a leap frog-like algorithm that’s second order and 

can overcome this velocity divergence issue (a popular choice)



RK4 – 4th order Runge-Kutta

• The algorithm works for equations of the form:
𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑓𝑓 𝑡𝑡, 𝑦𝑦 , 𝑦𝑦 𝑡𝑡0 = 𝑦𝑦0
• We get:

𝑦𝑦𝑚𝑚+1 = 𝑦𝑦𝑚𝑚 +
𝛿𝛿𝑡𝑡
6

𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4
• Where

𝑘𝑘1 = 𝑓𝑓 𝑡𝑡𝑚𝑚,𝑦𝑦𝑚𝑚

𝑘𝑘2 = 𝑓𝑓 𝑡𝑡𝑚𝑚 +
𝛿𝛿𝑡𝑡
2

,𝑦𝑦𝑚𝑚 + 𝑘𝑘1
𝛿𝛿𝑡𝑡
2

𝑘𝑘3 = 𝑓𝑓 𝑡𝑡𝑚𝑚 +
𝛿𝛿𝑡𝑡
2

,𝑦𝑦𝑚𝑚 + 𝑘𝑘2
𝛿𝛿𝑡𝑡
2

𝑘𝑘4 = 𝑓𝑓 𝑡𝑡𝑚𝑚 + 𝛿𝛿𝑡𝑡,𝑦𝑦𝑚𝑚 + 𝑘𝑘3𝛿𝛿𝑡𝑡



RK4 – 4th order Runge-Kutta

• For our case, we have a second order differential equation, so we can write:
𝑑𝑑𝑝𝑝
𝑑𝑑𝑡𝑡

= 𝑓𝑓 𝑡𝑡,𝑝𝑝 = 𝑬𝑬 +
𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
𝒑𝒑 × 𝑩𝑩

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑔𝑔 𝑡𝑡, 𝑥𝑥 =
𝑝𝑝𝑚𝑚𝑐𝑐

𝑝𝑝2 + 𝑚𝑚2
= 𝑣𝑣𝑚𝑚

• If velocity doesn’t change much (as we are relativistic), then we can solve the 
second equation with a simple integrator, like Euler, no need for RK4.

– Hard to write 𝑑𝑑𝑚𝑚
𝑑𝑑𝑖𝑖

 as an explicit function of x, so RK4 isn’t much better than 
Euler in this case.


	Computational lattice design��Numerical methods II
	In this lecture
	General strategy for particle tracking
	Generating a particle distribution
	Generating a particle distribution
	Generating a particle distribution
	Generating a particle distribution
	Generating a particle distribution
	Generating/importing a field map
	Generating/importing a field map
	Generating/importing a field map
	Interpolation of a field map
	Bezier curves
	Bezier curves
	Bezier curves
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories – simplest integrator
	Integrating trajectories – simplest integrator
	Integration methods
	Most common integrators
	RK4 – 4th order Runge-Kutta
	RK4 – 4th order Runge-Kutta

