Lancaster
University = °

Computational lattice design

Numerical methods Il

Dr Robert Apsimon
r.apsimon@lancaster.ac.uk

mailto:r.apsimon@lancaster.ac.uk

_ Lancaster E=3
In this lecture CHIVETSiLy

 We will now look at the considerations for writing your own tracking code.

 While there are plenty of tracking codes available, it is good to understand
how to write your own.

— Aside from giving a good conceptual understanding, codes written by
someone else don’t always do exactly what you want it to do...

e ASTRA changes your coordinate system if you use dipoles
e MAD/MADX doesn’t allow you to import field maps
e PARMILA/PARMELA is difficult to use and computationally limited

, . Lancaster E=3
General strategy for particle tracking University

1. Import/generate your particle distribution
2. Import/generate your field map or beam line
3. Integrate your trajectory along the field map/beam line

e Conceptually, writing a tracking code is much easier than it sounds
— There are, of course, plenty of little fiddly bits, but nothing too strenuous!

Lancaster

Generating a particle distribution University T-%
, 2c
e You should all be familiar with the Twiss XA _O‘V;E/”’ /_,tanz‘f” =33
parameters. L
* From this, the beam ellipse can be written - ~oelyd
as:
2 / 12 X
yx© + 2axx’ + fx T =g, >
° — EN
Where & = e

e Generating a random particle distribution for a rotated ellipse like this is
difficult, what would be better is to generate a particle distribution for a
circle.

— This is essentially what we do. We define the particle distribution in
normalised phase space coordinates and transform it into actual phase
space coordinates.

_ _ o _ Lancaster E=3
Generating a particle distribution University

; 2a
* |If we take the transformation: A ¢ V;E/’Y tan2p =
O ' /./
(x,) - \/Fa 1 (XI,V> - —aief

X

VX

e Then the beam ellipse:
yx2 + 2axx’ + Bx'* = &g
Turns into:

2
Xg+Xy =¢

* So now we can generate our normalised phase space distribution easily and
the real phase space coordinates are given as:

x=\/EXN

(—aXN + XIIV)

VB

x' =

_ _ o _ Lancaster E=3
Generating a particle distribution University

 There are many different particle
distributions we could generate

— Most commonly a Gaussian
— Could do uniform distribution

e This is slightly more complicated

e (Gaussian:

— Let Xy and Xy be Gaussian distributed arr'éys of random numbers with a
standard deviation of /¢

g
x=\/§XN

(—aXy + Xy)

JB

x' =

_ _ o _ Lancaster E=3
Generating a particle distribution University

e Uniform:

— Let m and n be uniformly distributed random in the range of [0, 1]
= [e,m
g

— Then
Xy =1rcosf
Xy =71sind

Twice as long circumference

v

Twice as many points needed
to maintain the same density

— Why do we need sqrt(m) for r?

_ _ o _ Lancaster E=3
Generating a particle distribution University

e We can in fact create any distribution we want with just 3 arrays uniformly
distributed random numbers (m, n, p):

— Assume our required distribution is a function f(x, x")
m is a random number in the range [X, Xmax]
n is a random number in the range [x,’m-n, x,’nax]
p is a random number in the range [0, 1]

f(mn)

max(f(x,x"))
distribution

—Ifp < ,then x = m, x’ = n and this is added to the particle

— Otherwise m, n, p are rejected and we generate new values for m, n, p

— We continue this algorithm until we have enough particles in our
distribution.

_ _ _ . Lancasjcer
Generating/importing a field map University

e A field map can be described in different ways, depending on what you need.

— If an analytical field distribution exists and can be easily described then a
field map can be considered as a function:

e E.g. quadrupoles, dipoles...

— For more complicated systems, we need to define the electric and
magnetic fields at specific points

e This can be 1-, 2-, 3- or even 4D

—4D is very rare and much more difficult as the amount of data grows
rapidly with the number of dimensions!

e The obvious downside with discrete field maps is that you lose
accuracy between grid points.

_ _ _ . Lancasjcer
Generating/importing a field map University

e Formulaic field maps

— Most tracking codes have commands to for common classes of magnetic
and electric elements:

 Dipole, quadrupole, multipole, kickers...

e As we saw in the previous lecture, if we have a formula to describe the
magnetic and electric fields, we can easily define an equation of
motion (which we can either solve analytically or numerically):

i E,(x,y,z,t) + v,B,(x,y,2,t) —v,B,(x,y,2,t)
(y) -1 E,(x,y,2,t) —v,B,(x,y,2,t) + v,B,(x,y,2,1)

g m

Z E,(x,y,z,t) + vBy(x,y,2,t) —v,By(x,y,2t)

e Later we will come back to this equation

_ _ _ . Lancasjcer
Generating/importing a field map University

e Discrete field maps
— Most codes will also allow you to import a field map as a text file

e Each code will have its own format for the text file, but they all require
the same information:

—Positionsinx, y, z
—Real and imaginary components of the field in x, y and z

—Usually the electric (E) and magnetic (H) fields are imported as
separate files

(Recall B = 4w x 10”7 H)

— Since discrete field maps miss information between the grid points, we
need to interpolate between points in general.

Lancaster

Interpolation of a field map University 3
/l

* As we only have limited data, we need to find a way //

to estimate the field between points: En. o Ensa)

— Linear interpolation ‘4 x/ »‘

e Simplest approach, good for slowly varying fields /ZJIx
) o /
E(x) = (1_E)En+aE(n+1) /,’

— Polynomial interpolation
e Similar to linear interpolation, but requires more data points
e Better accuracy, but more computationally expensive

— Spline fitting

e High accuracy, but computationally expensive, especially for 3D
interpolation

 Most commonly Bezier curves (plenty of information about these
online)

Bezier curves

e Bezier curves are at the core of almost all

spline fitting.

— Let’s start by thinking about a 2" order

Bezier curve:
— Define 3 points, A, Band C

— Draw a line from Ato B (L1), and B to C (L2)

— We will define a parameter t, such that
when it is zero, we are at Aon L1 and B on

L2.

— Now draw a line (L3) from L1(t) to L2(t)
— The point L3(t) along our new line describes

our 2" order Bezier curve

Lancaster
University =

Bezier curves

e Writing this all out as equations:
xg(t) = (1 —t)%xg + 2t(1 — t)x; + t2x,
ye() = (1 = 0)%yo + 2t(1 — Oy, + t°y;

e Now increase the order of the Bezier curve,
we need more points, so an nt" order Bezier
curve needs n+1 points

— We use these to generate n generations of
Bezier curves (1%t order curves are lines!).

— The functional form of the nt" order Bezier

curve forms a binomial expansion:
n

Po(©) =) (i) =" kekp

k=0

Lancaster
University =

Lancaster

Bezier curves University **

e Writing this all out as equations:

'.""'1, ;
xg(t) = (1 —t)%xg + 2t(1 — t)x; + t2x, ; ‘
yp(t) = (1 —t)%y + 2t(1 —)y, + t%y, ’
: i
e While Bezier curves may have a simple looking °*|
form, they can describe very complicated :
shapes in a computationally efficient manner. u g .
— However, a Bezier curve can never perfectly '; e e s s R
describe a circle (I'll leave that as an : 5 5 Q
exercise for you to find out why) =
 As we move to higher and higher dimensions, -
any spline fitting method becomes ; e »
computationally expensive and something to | 4 L
note for any tracking code. L e S '

_ _ _ Lancaster E=3
Integrating trajectories University

e So far, we have looked at:
— Generating particle distributions
— Field maps and interpolation

e Now we need to move on to figuring out the particles’ trajectories through
our system.

— Recall from a few slides ago, we said that the equation of motion we get

is:
5 E,(x,y,z,t) + vy,B,(x,y,2,t) —v,B,(x,y,2,t)
(y) -1 E,(x,y,2,t) —v,B,(x,y,2,t) + v,B,(x,y,2,t)
g m
Z E,(x,y,z,t) + vBy(x,y,2,t) —v,By(x,y,2,1t)

— While this is true, for relativistic systems, this is not the most appropriate
method.

Lancaster

Integrating trajectories University =
i . E,(x,y,z,t) + vy,B,(x,y,2,t) —v,B,(x,y,2,t)
<y> =—/| Ey(x,y,2z,t) — v B,(x,y,2,t) + v,B,(x,y,2,t)
g m
Z E,(x,y,z,t) + vBy(x,y,2,t) —v,By(x,y,2,1t)

* This method relies on us using position and velocity, but in relativistic
systems, v < ¢

— Therefore, as we accelerate our particles, the increase in velocity gets
smaller.

e A numerical error could push the velocity over the speed of light and
the tracking code would break down.

— If we remember the Lorentz force:

dp
F=q(E+vXB)=—
q()=
e Although the velocity change varies, for a given force, the momentum

increases linearly with time!

_ _ _ Lancaster E=3
Integrating trajectories University

e The first thing we need to do is describe all velocity-related variables in terms
of momentum. It’s useful to remember:

pc = fymc?
PrC = ,Bkymcz
E = ymc?

E? — p2c? = m?c*
e Where p;, means the momentum in the k-direction

 Note that in here ¢ = 1 if we are working in natural units (elsewhere in the
tracking code it won’t be, which is a common cause of errors that even | fall
foul of!).

— To avoid this confusion, we will ignore the c’s and rewrite these as

p = Pym
Dr = Prym
E=ym

E? — p?2 = m?

Lancaster

Integrating trajectories University ©°
p = pym
Pr = Prym
E=ym

E? — p? = m?
 We will now use these to help us write velocity in terms of momentum:
PrC PrC

vV, = —
. E \/p2 _|_m2

 Note: in this equation, ¢ = 3 X 108 which is subtle but very important!

_ _ _ Lancaster E=3
Integrating trajectories University

e Finally, we can rewrite our equation of motion into a more appropriate form:

d
—p—q(E+va)=q<E(x,y,Z,t)+ PXB(x:Y»Z:t)>

dt

 The charge is given in units of electrons, so for electrons or protons, we can
take it to be -1 or +1 respectively, allowing us to simplify our equation to:

E ‘ B B
| / x+\/p2+m2(py z Dz y)\
Px C
p.y — E)’ + \/pz g (szx - prz)
Pz c

(pry - pyBx))

e For simplicity, | will just use the vector form of this equation from now on,
but please not that in reality it’s a set of 3 coupled differential equations.

: : , _ _ Lancaster E=3
Integrating trajectories — simplest integrator University

Ap . C
At ~p_E+\/P2 + m?
 We will assume that we are dealing with a system that is either DC (e.g.
dipole magnet) or single frequency (e.g. RF cavity), so we can pull out the
time dependence as:
Ap N

E +
At (\/p2 _|_m2

 We will use our field maps and interpolation to estimate the electric and

magnetic fields (usually the magnetic field is given as H = LN

Ho
B = 41 x 10~7H)
- (5
Pn+1) — Pn ~ En n
ot Jpi +m?

pXB

p X B) eiwt

Pn X Bn) e'tn

: : , _ _ Lancaster E=3
Integrating trajectories — simplest integrator ~ University

Pn+1) — Pn - (E C

+ X B, | e@in

e Rearranging, this gives us:

Pn+1) = Pn + ot E, + P, X B, el®tn — Pn t eiwt"Fn&f
Vpi +m?
PnC
UV, = 5
Vpi +m?
Pn+1)C

e This method is called an Euler integrator
 Note: 4t is called the timestep

Lancaster

Integration methods University ©

* Integrator order: this refers to order of the numerical error

— E.g. an Euler integrator is a 15t order integrator, so it has errors that are 2@
order or higher.

— Some integrators can limit the maximum error to a certain order, while
others allow errors to propagate and grow over time.

e Symplectic integrators: the total energy of a system is conserved, which in
turn conserves the phase space emittance

— Non-symplectic integrators can lose or gain energy over many iterations,
but this is only really an issue if we want to track particles for very long
times.

* |If we want to improve our tracking accuracy, we can:
— Reduce the timestep
— Increase the integrator order

_ Lancaster
Most common integrators University

e Eulerintegrator:
— Very basic integrator, but very poor accuracy, almost never used

e 4% order Runge-Kutta integrator:
— Quite easy to set up, good accuracy, almost always the method of choice
— Non-symplectic, so not appropriate for long-term simulations
— RK integrators can come in higher orders, but RK4 is most popular.

e Leap frog algorithms:
— Describes a class of methods of different order, can be symplectic or not.
— Position is evaluated at the timesteps, velocity is between timesteps.

— Velocity calculations prone to divergences, which is bad for relativistic
applications!

— The Boris “push” algorithm is a leap frog-like algorithm that’s second order and
can overcome this velocity divergence issue (a popular choice)

Lancaster E=3
RK4 — 4t order Runge-Kutta University °

e The algorithm works for equations of the form:

dy
E — f(tly))y(tO) = Yo
e We get:
ot
Yn+1 = Yn T 3 (ky + 2k, + 2k3 + ky)
e Where

ki = f(tn:yn)
ot ot
k, =f1|ty +?:yn +k1?

ot ot
ks =f tn"‘?:yn‘l'kz?
k, = f(t, + 6t,y, + k36t)

Lancaster E=3
RK4 — 4t order Runge-Kutta University

e For our case, we have a second order differential equation, so we can write:

dp

R
dx Dy C
—:g(t,x): * :vx

e |f velocity doesn’t change much (as we are relativistic), then we can solve the
second equation with a simple integrator, like Euler, no need for RK4.

. d - . .
— Hard to write d—f as an explicit function of x, so RK4 isn’t much better than
Euler in this case.

	Computational lattice design��Numerical methods II
	In this lecture
	General strategy for particle tracking
	Generating a particle distribution
	Generating a particle distribution
	Generating a particle distribution
	Generating a particle distribution
	Generating a particle distribution
	Generating/importing a field map
	Generating/importing a field map
	Generating/importing a field map
	Interpolation of a field map
	Bezier curves
	Bezier curves
	Bezier curves
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories
	Integrating trajectories – simplest integrator
	Integrating trajectories – simplest integrator
	Integration methods
	Most common integrators
	RK4 – 4th order Runge-Kutta
	RK4 – 4th order Runge-Kutta

