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Plan for today

• Lecture 1:
– Conceptual overview of numerical methods for accelerator design and 

simulation codes.

• Lecture 2:
– Detailed look at the structure of tracking codes

• Lecture 3:
– Practical tutorial to writing your own basic tracking code

• If you don’t have a laptop with you, or don’t have some coding 
language (matlab, Python, C/C++…) then please pair up with someone.



What are computational methods used for?

• Tracking codes:
– A generated particle distribution is tracked along a beam line with the distribution 

output at certain points to allow for analysis.
• Single-particle tracking is used for accurate modelling of trajectories.

– Usually works with small step sizes or higher order integrators.
– Computationally intensive, so only used for small number of particles.
– Most commonly used for longitudinal dynamics where transverse effects are less 

important.
• Multi-particle tracking used for global exploration of phase space

– Less computationally intensive, at cost of slight reduction in accuracy, allowing for 
more particles

– Good for long-term or nonlinear effects (bunching, dynamic aperture studies…)

Single-
particle 
tracking

multi-
particle 
tracking



What are computational methods used for?

• Beam line design and optimisation:
– For example, MAD, ELEGANT
– Primarily focused on matching beam and/or lattice parameters.
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What types of methods are used for 
accelerator codes?

• Tracking codes:
– Numerical integrators:

• There are many different options on integration that we will look into.
• This is the main focus of today’s lectures

• Lattice design and optimisation
– Numerical optimisers

• Again, many different options with pros/cons depending on application
• Will touch on this, but won’t go into too much depth



Why do we need computational methods in 
lattice design?

• In simple cases, we can solve Hill’s Equation (𝑋𝑋′′ + 𝐾𝐾 𝑠𝑠 𝑋𝑋 = 0), or use other 
techniques to solve or optimise analytically (e.g., transfer matrices)
– E.g., thin-lens FODO can be completely solved analytically
– However, this is arduous, and the complexity of the equations grows 

rapidly if we add more elements.

• In many cases, as we shall see, the equations cannot be solved analytically.
• We must either solve numerically, or use approximations (e.g., thin-lens)

– Optimisation of lattice and beam parameters can be difficult even in 
simple cases
• E.g., minimising the beam size in a thin-lens FODO cell

– Nonlinear elements such as sextupoles must be solved numerically.



Example 1: trajectory through a quadrupole

• For a quadrupole, we know the magnetic field varies as:

𝐵𝐵𝑦𝑦 = 𝑥𝑥
𝑑𝑑𝐵𝐵𝑦𝑦
𝑑𝑑𝑥𝑥

– Recall: 𝑘𝑘 = 𝑒𝑒
𝑝𝑝
𝑑𝑑𝐵𝐵𝑦𝑦
𝑑𝑑𝑑𝑑

• The force on a moving charged particle due to a magnetic field is:
𝐹𝐹 = 𝑒𝑒𝑒𝑒 × 𝐵𝐵

⇒ 𝐹𝐹𝑑𝑑 = 𝑒𝑒𝑒𝑒𝑧𝑧𝐵𝐵𝑦𝑦 = 𝑒𝑒𝑧𝑧𝑒𝑒 𝑥𝑥
𝑑𝑑𝐵𝐵𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑘𝑘𝑒𝑒𝑧𝑧𝑝𝑝𝑥𝑥

• Writing this as a differential equation:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

=
𝑘𝑘𝑒𝑒𝑧𝑧𝑝𝑝
𝛾𝛾𝛾𝛾

𝑥𝑥



Example 1: trajectory through a quadrupole

• Next, we want to convert from time to z position:
𝑧𝑧 = 𝑒𝑒𝑧𝑧𝑡𝑡

• So our differential equation changes as:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

=
𝑘𝑘𝑒𝑒𝑧𝑧𝑝𝑝
𝛾𝛾𝛾𝛾

𝑥𝑥 ⇒ 𝑒𝑒𝑧𝑧2
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

=
𝑘𝑘𝑝𝑝𝑒𝑒𝑧𝑧
𝛾𝛾𝛾𝛾

𝑥𝑥

• Rearranging gives us:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘
𝑝𝑝

𝛾𝛾𝛾𝛾𝑒𝑒𝑧𝑧
𝑥𝑥 = 𝑘𝑘𝑥𝑥

– Recall: 𝑝𝑝 = 𝛽𝛽𝛾𝛾𝛾𝛾𝛽𝛽 = 𝛾𝛾𝛾𝛾𝑒𝑒𝑧𝑧
• Therefore:

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘𝑥𝑥

– This is the Hill’s equation for a quadrupole



Example 1: trajectory through a quadrupole

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘𝑥𝑥

• The general solution for this is:

𝑥𝑥 = �
𝐴𝐴 cos 𝑘𝑘𝑧𝑧 + 𝐵𝐵 sin 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝐴𝐴 cosh 𝑘𝑘𝑧𝑧 + 𝐵𝐵 sinh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0

Differentiating, we get:

𝑥𝑥′ = �
− 𝑘𝑘𝐴𝐴 sin 𝑘𝑘𝑧𝑧 + 𝑘𝑘𝐵𝐵 cos 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝑘𝑘𝐴𝐴 sinh 𝑘𝑘𝑧𝑧 + 𝑘𝑘𝐵𝐵 cosh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0



Example 1: trajectory through a quadrupole

• If we furthermore apply the initial conditions:
𝑥𝑥 0 = 𝑥𝑥0
𝑥𝑥′ 0 = 𝑥𝑥0′

• We get:

𝑥𝑥 =
𝑥𝑥0 cos 𝑘𝑘𝑧𝑧 +

𝑥𝑥0′

𝑘𝑘
sin 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝑥𝑥0 cosh 𝑘𝑘𝑧𝑧 +
𝑥𝑥0′

𝑘𝑘
sinh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0

𝑥𝑥′ = �
−𝑥𝑥0 𝑘𝑘 sin 𝑘𝑘𝑧𝑧 + 𝑥𝑥0′ cos 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝑥𝑥0 𝑘𝑘 sinh 𝑘𝑘𝑧𝑧 + 𝑥𝑥0′ cosh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0



Example 1: trajectory through a quadrupole

• And we can put this all together into a familiar transfer matrix form:
• Focusing quad (𝑘𝑘 < 0):

𝑥𝑥1
𝑥𝑥1′

=
cos 𝑘𝑘𝑧𝑧

sin 𝑘𝑘𝑧𝑧

𝑘𝑘
− 𝑘𝑘 sin 𝑘𝑘𝑧𝑧 cos 𝑘𝑘𝑧𝑧

𝑥𝑥0
𝑥𝑥0′

• Defocusing quad (𝑘𝑘 > 0):

𝑥𝑥1
𝑥𝑥1′

=
cosh 𝑘𝑘𝑧𝑧

sinh 𝑘𝑘𝑧𝑧

𝑘𝑘
𝑘𝑘 sinh 𝑘𝑘𝑧𝑧 cosh 𝑘𝑘𝑧𝑧

𝑥𝑥0
𝑥𝑥0′



Example 2: trajectory through a sextupole

• What about a sextupole? In this case, we can write the magnetic field due to 
a transverse offset as:

𝐵𝐵𝑦𝑦 =
𝑘𝑘3𝑝𝑝
𝑒𝑒
𝑥𝑥2

• From the force and converting 𝑡𝑡 → 𝑧𝑧, we get the differential equation:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘3𝑥𝑥2

• To solve this, we will use a different approach and assume the solution is:

𝑥𝑥 = �
𝑛𝑛=0

∞

𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛



Example 2: trajectory through a sextupole

𝑥𝑥 = �
𝑛𝑛=0

∞

𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛 →
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘3𝑥𝑥2

• Plugging our assumed solution into our equation, we get:

�
𝑛𝑛=2

∞

𝑛𝑛 − 1 𝑛𝑛𝑎𝑎𝑛𝑛𝑧𝑧 𝑛𝑛−2 = 𝑘𝑘3 �
𝑛𝑛=0

∞

𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛
2

• Writing out the first few terms on each side, we get:
2𝑎𝑎2 + 6𝑎𝑎3𝑧𝑧 + 12𝑎𝑎4𝑧𝑧2 + ⋯ = 𝑘𝑘3𝑎𝑎02 + 2𝑘𝑘3𝑎𝑎0𝑎𝑎1𝑧𝑧 + 𝑘𝑘3 2𝑎𝑎0𝑎𝑎2 + 𝑎𝑎12 𝑧𝑧2 + ⋯

• Now we can solve coefficients by comparing like terms:

𝑎𝑎2 = 𝑘𝑘3𝑎𝑎02

2
; 𝑎𝑎3 = 𝑘𝑘3𝑎𝑎0𝑎𝑎1

3
;  𝑎𝑎4 = 𝑘𝑘32𝑎𝑎03+𝑎𝑎12

12



Example 2: trajectory through a sextupole

• Applying the same initial conditions as before, we find that our solution is:
𝑥𝑥 = 𝑘𝑘3𝑥𝑥02 + 2𝑘𝑘3𝑥𝑥0𝑥𝑥0′ 𝑧𝑧 + 𝑘𝑘32𝑥𝑥03 + 𝑘𝑘3𝑥𝑥0′

2 𝑧𝑧2 + ⋯

𝑥𝑥′ = 2𝑘𝑘3𝑥𝑥0𝑥𝑥0′ + 2 𝑘𝑘32𝑥𝑥03 + 𝑘𝑘3𝑥𝑥0′
2 𝑧𝑧 + ⋯

• Key points about this:
– For sextupoles and other nonlinear elements, there is no closed form 

solution for the trajectory.
– The trajectory has a nonlinear dependence on initial conditions and 

sextupole strength, making them difficult to model analytically.
– By assuming a series expansion solution, we can solve similar problems 

like this to any order.
• But need to note this will always be an approximation.



Lattice design & optimisation: numerical 
optimisers

• As mentioned at the beginning of the lecture, lattice design and optimisation 
is focused on matching beam and lattice parameters.
– Require numerical optimisers to do this, but what type?

• Global optimisers
– Good at finding globally optimal region of parameter space
– Generally poor (or slow) at converging to the globally optimal solution.

• Local optimisers
– Will rapidly converge to an optimal solution
– Prone to getting stuck in a local minimum

• Quite common to use a global optimiser then a local one to find solutions



Lattice design and optimisation

• As with integration, optimisation problems can get very complicated very 
quickly!
– E.g., Consider a beam line of 2 quads and 2 drift lengths, where we want 

to define the quad strengths and drift lengths in order to match the initial 
and final beam parameters:

– Unknowns: 𝐿𝐿1, 𝐿𝐿2,𝑘𝑘1, 𝑘𝑘2
– Knowns: Initial and final 𝛽𝛽𝑑𝑑,𝛽𝛽𝑦𝑦,𝛼𝛼𝑑𝑑,𝛼𝛼𝑦𝑦

• This seems like quite an easy problem until you look at the equations to 
solve…

𝐿𝐿1 𝐿𝐿2

𝑘𝑘1 𝑘𝑘2



Constraint equations for a 2-quad matching cell

• Not analytically 
solvable

• Parameter space 
riddled with local 
minima

• Even numerical 
optimisers 
struggle with this



My preferred approach to solving difficult 
optimisation problems

1. Simplify the problem to a thin-lens approximation
– This reduces the constraints to polynomials, so we know there will only be a 

finite number of solutions (at most)
2. Solve this simplified problem numerically

– Numerical optimisers will spit out a list of solutions
– If there are no solutions, it’s likely that there are no solutions in the thick-lens 

case (though not certain…)
3. Discard unphysical solutions from your list and select the “best” solution

– Discard cases with negative lengths or complex values
– “best” solution is usually obvious, such as smallest length, or lowest magnet 

strengths etc.
4. Use your “best” solution as the starting point for the thick-lens problem

– Much more likely to find the best solution without being stuck in local minima.
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