
Computational lattice design

Numerical methods I

Dr Robert Apsimon
r.apsimon@lancaster.ac.uk

mailto:r.apsimon@lancaster.ac.uk

Plan for today

• Lecture 1:
– Conceptual overview of numerical methods for accelerator design and

simulation codes.

• Lecture 2:
– Detailed look at the structure of tracking codes

• Lecture 3:
– Practical tutorial to writing your own basic tracking code

• If you don’t have a laptop with you, or don’t have some coding
language (matlab, Python, C/C++…) then please pair up with someone.

What are computational methods used for?

• Tracking codes:
– A generated particle distribution is tracked along a beam line with the distribution

output at certain points to allow for analysis.
• Single-particle tracking is used for accurate modelling of trajectories.

– Usually works with small step sizes or higher order integrators.
– Computationally intensive, so only used for small number of particles.
– Most commonly used for longitudinal dynamics where transverse effects are less

important.
• Multi-particle tracking used for global exploration of phase space

– Less computationally intensive, at cost of slight reduction in accuracy, allowing for
more particles

– Good for long-term or nonlinear effects (bunching, dynamic aperture studies…)

Single-
particle
tracking

multi-
particle
tracking

What are computational methods used for?

• Beam line design and optimisation:
– For example, MAD, ELEGANT
– Primarily focused on matching beam and/or lattice parameters.

𝑥𝑥1
𝑥𝑥1′

= 𝑅𝑅11 𝑅𝑅12
𝑅𝑅21 𝑅𝑅22

𝑥𝑥0
𝑥𝑥0′

𝛽𝛽1
𝛼𝛼1
𝛾𝛾1

=
𝑅𝑅112 −2𝑅𝑅11𝑅𝑅12 𝑅𝑅122

−𝑅𝑅11𝑅𝑅21 𝑅𝑅11𝑅𝑅22 + 𝑅𝑅12𝑅𝑅21 −𝑅𝑅12𝑅𝑅22
𝑅𝑅212 −2𝑅𝑅21𝑅𝑅22 𝑅𝑅222

𝛽𝛽0
𝛼𝛼0
𝛾𝛾0

What types of methods are used for
accelerator codes?

• Tracking codes:
– Numerical integrators:

• There are many different options on integration that we will look into.
• This is the main focus of today’s lectures

• Lattice design and optimisation
– Numerical optimisers

• Again, many different options with pros/cons depending on application
• Will touch on this, but won’t go into too much depth

Why do we need computational methods in
lattice design?

• In simple cases, we can solve Hill’s Equation (𝑋𝑋′′ + 𝐾𝐾 𝑠𝑠 𝑋𝑋 = 0), or use other
techniques to solve or optimise analytically (e.g., transfer matrices)
– E.g., thin-lens FODO can be completely solved analytically
– However, this is arduous, and the complexity of the equations grows

rapidly if we add more elements.

• In many cases, as we shall see, the equations cannot be solved analytically.
• We must either solve numerically, or use approximations (e.g., thin-lens)

– Optimisation of lattice and beam parameters can be difficult even in
simple cases
• E.g., minimising the beam size in a thin-lens FODO cell

– Nonlinear elements such as sextupoles must be solved numerically.

Example 1: trajectory through a quadrupole

• For a quadrupole, we know the magnetic field varies as:

𝐵𝐵𝑦𝑦 = 𝑥𝑥
𝑑𝑑𝐵𝐵𝑦𝑦
𝑑𝑑𝑥𝑥

– Recall: 𝑘𝑘 = 𝑒𝑒
𝑝𝑝
𝑑𝑑𝐵𝐵𝑦𝑦
𝑑𝑑𝑑𝑑

• The force on a moving charged particle due to a magnetic field is:
𝐹𝐹 = 𝑒𝑒𝑒𝑒 × 𝐵𝐵

⇒ 𝐹𝐹𝑑𝑑 = 𝑒𝑒𝑒𝑒𝑧𝑧𝐵𝐵𝑦𝑦 = 𝑒𝑒𝑧𝑧𝑒𝑒 𝑥𝑥
𝑑𝑑𝐵𝐵𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑘𝑘𝑒𝑒𝑧𝑧𝑝𝑝𝑥𝑥

• Writing this as a differential equation:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

=
𝑘𝑘𝑒𝑒𝑧𝑧𝑝𝑝
𝛾𝛾𝛾𝛾

𝑥𝑥

Example 1: trajectory through a quadrupole

• Next, we want to convert from time to z position:
𝑧𝑧 = 𝑒𝑒𝑧𝑧𝑡𝑡

• So our differential equation changes as:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

=
𝑘𝑘𝑒𝑒𝑧𝑧𝑝𝑝
𝛾𝛾𝛾𝛾

𝑥𝑥 ⇒ 𝑒𝑒𝑧𝑧2
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

=
𝑘𝑘𝑝𝑝𝑒𝑒𝑧𝑧
𝛾𝛾𝛾𝛾

𝑥𝑥

• Rearranging gives us:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘
𝑝𝑝

𝛾𝛾𝛾𝛾𝑒𝑒𝑧𝑧
𝑥𝑥 = 𝑘𝑘𝑥𝑥

– Recall: 𝑝𝑝 = 𝛽𝛽𝛾𝛾𝛾𝛾𝛽𝛽 = 𝛾𝛾𝛾𝛾𝑒𝑒𝑧𝑧
• Therefore:

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘𝑥𝑥

– This is the Hill’s equation for a quadrupole

Example 1: trajectory through a quadrupole

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘𝑥𝑥

• The general solution for this is:

𝑥𝑥 = �
𝐴𝐴 cos 𝑘𝑘𝑧𝑧 + 𝐵𝐵 sin 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝐴𝐴 cosh 𝑘𝑘𝑧𝑧 + 𝐵𝐵 sinh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0

Differentiating, we get:

𝑥𝑥′ = �
− 𝑘𝑘𝐴𝐴 sin 𝑘𝑘𝑧𝑧 + 𝑘𝑘𝐵𝐵 cos 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝑘𝑘𝐴𝐴 sinh 𝑘𝑘𝑧𝑧 + 𝑘𝑘𝐵𝐵 cosh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0

Example 1: trajectory through a quadrupole

• If we furthermore apply the initial conditions:
𝑥𝑥 0 = 𝑥𝑥0
𝑥𝑥′ 0 = 𝑥𝑥0′

• We get:

𝑥𝑥 =
𝑥𝑥0 cos 𝑘𝑘𝑧𝑧 +

𝑥𝑥0′

𝑘𝑘
sin 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝑥𝑥0 cosh 𝑘𝑘𝑧𝑧 +
𝑥𝑥0′

𝑘𝑘
sinh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0

𝑥𝑥′ = �
−𝑥𝑥0 𝑘𝑘 sin 𝑘𝑘𝑧𝑧 + 𝑥𝑥0′ cos 𝑘𝑘𝑧𝑧 , 𝑘𝑘 < 0

𝑥𝑥0 𝑘𝑘 sinh 𝑘𝑘𝑧𝑧 + 𝑥𝑥0′ cosh 𝑘𝑘𝑧𝑧 , 𝑘𝑘 ≥ 0

Example 1: trajectory through a quadrupole

• And we can put this all together into a familiar transfer matrix form:
• Focusing quad (𝑘𝑘 < 0):

𝑥𝑥1
𝑥𝑥1′

=
cos 𝑘𝑘𝑧𝑧

sin 𝑘𝑘𝑧𝑧

𝑘𝑘
− 𝑘𝑘 sin 𝑘𝑘𝑧𝑧 cos 𝑘𝑘𝑧𝑧

𝑥𝑥0
𝑥𝑥0′

• Defocusing quad (𝑘𝑘 > 0):

𝑥𝑥1
𝑥𝑥1′

=
cosh 𝑘𝑘𝑧𝑧

sinh 𝑘𝑘𝑧𝑧

𝑘𝑘
𝑘𝑘 sinh 𝑘𝑘𝑧𝑧 cosh 𝑘𝑘𝑧𝑧

𝑥𝑥0
𝑥𝑥0′

Example 2: trajectory through a sextupole

• What about a sextupole? In this case, we can write the magnetic field due to
a transverse offset as:

𝐵𝐵𝑦𝑦 =
𝑘𝑘3𝑝𝑝
𝑒𝑒
𝑥𝑥2

• From the force and converting 𝑡𝑡 → 𝑧𝑧, we get the differential equation:
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘3𝑥𝑥2

• To solve this, we will use a different approach and assume the solution is:

𝑥𝑥 = �
𝑛𝑛=0

∞

𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛

Example 2: trajectory through a sextupole

𝑥𝑥 = �
𝑛𝑛=0

∞

𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛 →
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑧𝑧2

= 𝑘𝑘3𝑥𝑥2

• Plugging our assumed solution into our equation, we get:

�
𝑛𝑛=2

∞

𝑛𝑛 − 1 𝑛𝑛𝑎𝑎𝑛𝑛𝑧𝑧 𝑛𝑛−2 = 𝑘𝑘3 �
𝑛𝑛=0

∞

𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛
2

• Writing out the first few terms on each side, we get:
2𝑎𝑎2 + 6𝑎𝑎3𝑧𝑧 + 12𝑎𝑎4𝑧𝑧2 + ⋯ = 𝑘𝑘3𝑎𝑎02 + 2𝑘𝑘3𝑎𝑎0𝑎𝑎1𝑧𝑧 + 𝑘𝑘3 2𝑎𝑎0𝑎𝑎2 + 𝑎𝑎12 𝑧𝑧2 + ⋯

• Now we can solve coefficients by comparing like terms:

𝑎𝑎2 = 𝑘𝑘3𝑎𝑎02

2
; 𝑎𝑎3 = 𝑘𝑘3𝑎𝑎0𝑎𝑎1

3
; 𝑎𝑎4 = 𝑘𝑘32𝑎𝑎03+𝑎𝑎12

12

Example 2: trajectory through a sextupole

• Applying the same initial conditions as before, we find that our solution is:
𝑥𝑥 = 𝑘𝑘3𝑥𝑥02 + 2𝑘𝑘3𝑥𝑥0𝑥𝑥0′ 𝑧𝑧 + 𝑘𝑘32𝑥𝑥03 + 𝑘𝑘3𝑥𝑥0′

2 𝑧𝑧2 + ⋯

𝑥𝑥′ = 2𝑘𝑘3𝑥𝑥0𝑥𝑥0′ + 2 𝑘𝑘32𝑥𝑥03 + 𝑘𝑘3𝑥𝑥0′
2 𝑧𝑧 + ⋯

• Key points about this:
– For sextupoles and other nonlinear elements, there is no closed form

solution for the trajectory.
– The trajectory has a nonlinear dependence on initial conditions and

sextupole strength, making them difficult to model analytically.
– By assuming a series expansion solution, we can solve similar problems

like this to any order.
• But need to note this will always be an approximation.

Lattice design & optimisation: numerical
optimisers

• As mentioned at the beginning of the lecture, lattice design and optimisation
is focused on matching beam and lattice parameters.
– Require numerical optimisers to do this, but what type?

• Global optimisers
– Good at finding globally optimal region of parameter space
– Generally poor (or slow) at converging to the globally optimal solution.

• Local optimisers
– Will rapidly converge to an optimal solution
– Prone to getting stuck in a local minimum

• Quite common to use a global optimiser then a local one to find solutions

Lattice design and optimisation

• As with integration, optimisation problems can get very complicated very
quickly!
– E.g., Consider a beam line of 2 quads and 2 drift lengths, where we want

to define the quad strengths and drift lengths in order to match the initial
and final beam parameters:

– Unknowns: 𝐿𝐿1, 𝐿𝐿2,𝑘𝑘1, 𝑘𝑘2
– Knowns: Initial and final 𝛽𝛽𝑑𝑑,𝛽𝛽𝑦𝑦,𝛼𝛼𝑑𝑑,𝛼𝛼𝑦𝑦

• This seems like quite an easy problem until you look at the equations to
solve…

𝐿𝐿1 𝐿𝐿2

𝑘𝑘1 𝑘𝑘2

Constraint equations for a 2-quad matching cell

• Not analytically
solvable

• Parameter space
riddled with local
minima

• Even numerical
optimisers
struggle with this

My preferred approach to solving difficult
optimisation problems

1. Simplify the problem to a thin-lens approximation
– This reduces the constraints to polynomials, so we know there will only be a

finite number of solutions (at most)
2. Solve this simplified problem numerically

– Numerical optimisers will spit out a list of solutions
– If there are no solutions, it’s likely that there are no solutions in the thick-lens

case (though not certain…)
3. Discard unphysical solutions from your list and select the “best” solution

– Discard cases with negative lengths or complex values
– “best” solution is usually obvious, such as smallest length, or lowest magnet

strengths etc.
4. Use your “best” solution as the starting point for the thick-lens problem

– Much more likely to find the best solution without being stuck in local minima.

	Computational lattice design��Numerical methods I
	Plan for today
	What are computational methods used for?
	What are computational methods used for?
	What types of methods are used for accelerator codes?
	Why do we need computational methods in lattice design?
	Example 1: trajectory through a quadrupole
	Example 1: trajectory through a quadrupole
	Example 1: trajectory through a quadrupole
	Example 1: trajectory through a quadrupole
	Example 1: trajectory through a quadrupole
	Example 2: trajectory through a sextupole
	Example 2: trajectory through a sextupole
	Example 2: trajectory through a sextupole
	Lattice design & optimisation: numerical optimisers
	Lattice design and optimisation
	Constraint equations for a 2-quad matching cell
	My preferred approach to solving difficult optimisation problems

