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TEXT

INELASTIC NEUTRON SCATTERING

▸ Elastic scattering - no 
energy is transferred to 
the sample - diffraction 
pattern 

▸ Inelastic scattering some 
energy is transferred to 
the sample



TEXT

INELASTIC NEUTRON SCATTERING
▸ Inelastic energy transfer can occur due to many 

processes 

▸ Inelastic events give spectra

Applications of Neutron Scattering in Catalysis

And magnons



TEXT

MAGNONS

▸ Magnons are low energy 
excited states of electrons 

▸ Spin on one electron is 
perturbed and propagates 
through the lattice resulting 
in a wave of reorganisation 

▸ Dependent on the magnetic 
structure of a material

Nature Communications volume 8, Article number: 235 (2017)

https://www.nature.com/ncomms


TEXT

LINEAR SPIN-WAVE THEORY

Linearise 

Fourier transform 

Provides a ‘dispersion relation’ energy vs q



TEXT

SOLVING LINEAR SPIN WAVE THEORY: SPIN-W

▸ Numerical solver for the 
linear spin wave 
Hamiltonian 

▸ Input : Magnetic 
moments, lattice, model 
of interactions 

▸ Output: Simulated 
spectrum - can 
numerically fit to 
experiment 

Journal of Physics: Condensed Matter, Volume 27, Number 16

https://iopscience.iop.org/journal/0953-8984
https://iopscience.iop.org/volume/0953-8984/27
https://iopscience.iop.org/issue/0953-8984/27/16


RB2MNF4

▸ 2D Antiferromagnet 

▸ Interactions in planes of MnF 

▸ Mostly described by linear 
spin wave theory

7



CECAM 2019

RB2MNF4 THE DATA

▸ Clean data-set 

▸ Single magnon dispersion band 

▸ Remove Bragg peaks and 
integrate the signal intensity 
across the energy range 

▸ 2D map in Qh/Qk 

▸ Can we train a model to estimate 
the exchange constants?
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MLPS STRUGGLE WITH IMAGE RECOGNITION
▸ For a computer, literally these do not match 

▸ The MLP has no real concept of the spatial relations  

▸ Also, dense connections lead to parametric explosions for 
many pixel images
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CONVOLUTIONAL NEURAL NETS (CNNS)

▸ Uses filters to pick out important features 

▸ Compresses image information 

▸ Is finally connected to a typical NN layer 

▸ Successful CNNs are often very deep
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HOW CNNS WORK

▸ Filters work to pick out features in the image
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HOW CNNS WORK THE FILTERS

▸ Filter is a matrix 

▸ Filter dot product with image to produce scalar 

▸ A number of filters are added at each layer
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RB2MNF4 RESULTS

▸ Simple neural network 
with 4 convolutional 
layers - extract 
features 

▸ Function 
approximation from 
two layer MLP
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PCSMO THE SYSTEM
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▸ Double perovskite 

▸ Mixed A-site 

▸ Several possible models for 
the magnetism 

▸ Goodenough model 

▸ Zener polaron 

▸ Dimer model



PCSMO THE DATA
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▸ Significantly messier 
dataset 

▸ Noisy experimental 
data 

▸ Multiple bands 

▸ Presence of phonons



PCSMO THE DATA PART II: MULTI-BANDS AND HOW TO DEAL WITH THEM

▸ In Rb2MnF4 we could 
integrate across the 
energy spectrum 

▸ In PCSMO this would 
lead to loss of 
information 

▸ Develop an image with 
interactions across 
energy slices
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PCSMO THE DATA PART III : “NOISE”

▸ There is a large 
contribution from the 
phonon spectrum 

▸ This can obfuscate the 
magnon spectrum 

▸ Would like to remove this if 
possible
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PCSMO RESULTS: PHASE DISCRIMINATION (SIMULATED DATA)
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PCMSO RESULTS II: EXPERIMENTAL DATA

▸ Failure - noise :(
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PCSMO: REMOVING THE NOISE (AUTOENCODERS)
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▸ Can we remove the experimental ‘noise’ 

▸ Noise = instrument noise + other signals 

▸ We can try to use a denoising auto encoder 



PCSMO: REMOVING THE NOISE (AUTOENCODERS)
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▸ An unsupervised machine learning approach 

▸ Learn compressed representations 

▸ Can be similar to classical methods like PCA



PCSMO RESULTS III: AUTOENCODER + DISCRIMINATION

▸ (Qualified) Success :)
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MAKING MODELS INTERPRETABLE

▸ Classical models are often easy to interpret 

▸ Deep models, learned representations can be more 
opaque
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MAKING MODELS INTERPRETABLE

24

Model 
performance

Interpretability 
use

Sub-human Debug and 
improve

Human
Increase 

confidence 

Super-human Learn from 
successs



TEXT

INTERPRETING CNNS

▸ Visualising the activations 

▸ Visualise layer weights 

▸ Retrieving images that maximally activate a neuron 

▸ Filter maximisation 

▸ Embedding the codes with t-SNE 

▸ Class activation maps



TEXT

VISUALISE ACTIVATIONS
activations = activation_model.predict(img_tensor) 
first_layer_activation = activations[0]
plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis')

https://towardsdatascience.com/visualizing-intermediate-activation-in-convolutional-neural-networks-with-
keras-260b36d60d0



TEXT

VISUALISE ACTIVATIONS

https://towardsdatascience.com/visualizing-intermediate-activation-in-convolutional-neural-networks-with-
keras-260b36d60d0

Filters start out dense and blobby - sharpen up during training 

Very useful for identifying dead filters



TEXT

VISUALISE WEIGHTS

for i in range(nlayers): 
    filters, biases = model.layers[n].get_weights()

Most useful for early layers 

Working network - smooth weights features 

Noisy filters - network not trained long enough or overfit



TEXT

MAXIMAL ACTIVATION

▸ Can look at class activations or filter activations 

▸ Neurons do not have semantic meaning by themselves
arXiv:1311.2524

https://arxiv.org/abs/1311.2524


TEXT

FILTER MAXIMISATION

▸ Develop a loss function find the image that maximises a 
given filter response

# nth filter of the layer considered
layer_output = layer_dict[layer_name].output
loss = K.mean(layer_output[:, :, :, filter_index])

# compute the gradient of the input picture wrt this loss
grads = K.gradients(loss, input_img)[0]

# normalization trick: we normalize the gradient
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

# this function returns the loss and grads given the input picture
iterate = K.function([input_img], [loss, grads])

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html



TEXT

FILTER MAXIMISATION

▸ Convert random noise to a maximising image

# we start from a gray image with some noise
input_img_data = np.random.random((1, 3, img_width, img_height)) * 20 
+ 128.
# run gradient ascent for 20 steps
for i in range(20):
    loss_value, grads_value = iterate([input_img_data])
    input_img_data += grads_value * step

SHOW NOTEBOOK EXAMPLE



TEXT

ACTIVATION ATLAS

▸ Take an image - pass through a network 

▸ Map the vectors of different layers using dimensionality reduction of the vectors 

▸ Distance on the map grid corresponds to the the similarity of the vectors

https://distill.pub/2019/activation-atlas/



TEXT

CLASS ACTIVATION MAPS

▸ Show which regions of an input are responsible for 
classification

arXiv:1512.04150v1 

https://arxiv.org/abs/1512.04150v1


TEXT

CLASS ACTIVATION MAPS NETWORK ARCHITECTURE

▸ Global average pooling 

▸ Apply to final convolutional layer

arXiv:1512.04150v1



TEXT

CAM HOW IT WORKS
Filter (fk)

fk(x, y)

Global averages

Classes

Directly indicates the importance 
of a location (x, y) to the class 
activation Sc.

Upsample CAM to original image 
size



TEXT

GRAD-CAM GENERALISING CAM

The importance of feature map k for 
classification c

Summation of feature map time importance 

ReLU ensures that only positive contributions 
are measured

Grad-CAM does not require network 
reconfiguration 

Grad-CAM can work with any network type, 
not just CNNs 

arXiv:1610.02391v3 

https://arxiv.org/abs/1610.02391v3


INTERPRETABLE MODELS FOR NEUTRON SCATTERING
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Finding the right 
signal can be a 
needle in a 
haystack



INTERPRETABLE MODELS FOR NEUTRON SCATTERING
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Build a model 
discrimination 
network - ask it 
WHY it makes the 
choice.



INTERPRETABLE MODELS FOR NEUTRON SCATTERING
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The network identifies the 
same regions of E/Q 
space as a trained 
physicist.  

Could, in future, guide 
experiments of the same 
type.



SUMMARY

▸ Inelastic neutron scattering requires complex data analysis 
to extract useful information 

▸ Combining physics simulations with deep neural networks 
can help in interpreting experimental spectra 

▸ Understanding how neural networks arrive at answers is 
generally a good idea! 

▸ Understanding network results can provide guidance on 
how to sample experimental space
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