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ANALYSING AND UNDERSTANDING INELASTIC
NEUTRON SCATTERING WITH DEEP LEARNING
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INELASTIC NEUTRON SCATTERING

» Elastic scattering - no
energy is transferred to
the sample - diffraction
pattern

» Inelastic scattering some
energy is transferred to

the sample
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Length probed, A >30 10 0.0001 0.00001

Applications of Neutron Scattering in Catalysis
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Nature Communications volume 8, Article number: 235 (2017)


https://www.nature.com/ncomms
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SOLVING LINEAR SPIN WAVE THEORY: SPIN-W

» Numerical solver for the
linear spin wave
Hamiltonian

» Input : Magnetic
moments, lattice, model
of interactions

» Output: Simulated
spectrum - can
numerically fit to
experiment

Journal of Physics: Condensed Matter, Volume 27, Number 16



https://iopscience.iop.org/journal/0953-8984
https://iopscience.iop.org/volume/0953-8984/27
https://iopscience.iop.org/issue/0953-8984/27/16
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Two-magnon excitations observed by neutron scattering in the
two-dimensional spin-2 Heisenberg antiferromagnet Rba Mn Fy

T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, R. J. Christianson, and C. D. Frost
Phys. Rev. B 72, 014413 - Published 6 July 2005
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MLPS STRUGGLE WITH IMAGE RECOGNITION

» For a computer, literally these do not match
» The MLP has no real concept of the spatial relations

» Also, dense connections lead to parametric explosions for
many pixel images

WY
7“§$@VA

\/ WA ’ ‘\\"‘:$ ?1’:1/' »
RO~ —
e
VRV ™

'“ﬁvéﬁ
R, ¥/ 7AV |\
/"l;" \‘) “




Science and
Technology
Facilities Council

Uses filters to pick out important features
Compresses image information

s finally connected to a typical NN layer

Successful CNNs are often very deep
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HOW CNNS WORK

» Filters work to pick out features in the image
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HOW CNNS WORK THE FILTERS

» Filter is a matrix

» Filter dot product with image to produce scalar

» A number of filters are added at each layer

28x28 image

5x5
Filter

'

32x32 image
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Literature values:

e J; = 0.657 + 0.002
e J» = 0.006 + 0.003 J1 = 0.676

o Jo = 0.014

e J) =0.673 +£0.028
e J» =0.012 +0.002
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Ground State in a Half-Doped Manganite Distinguished by Neutron

. E. Johnstone, T. G. Perring, O. Sikora, D. Prabhakaran, and A. T. Boothroyd
Phys. Rev. Lett. 109, 237202 - Published 3 December 2012
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PCSMO THE DATA

» Significantly messier
dataset

» Noisy experimental
data

» Multiple bands

» Presence of phonons




» In Rb2MnF4 we could
integrate across the
energy spectrum

» In PCSMO this would
lead to loss of
information

» Develop an image with
Interactions across
energy slices
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PCSMO THE DATA PART Ill : “NOISE™

» There is a large
contribution from the
phonon spectrum

» This can obfuscate the
magnon spectrum

» Would like to remove this if
possible
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[conv_outputs, preaictigns] - get_output(ftest_
conv_outputs = conv_outputs[0, :, :, :]
maxval = np.argmax(np.array(predictions))

Emnvmrmmnd fvn~nAA mearma~s T srera ]

Prediction Goodenough
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PCMS0 RESULTS |1: EXPERIMENTAL DATA

» Failure - noise :(

ylist = np.linspace(0, dim[0]*2,
X, Y = np.meshgrid(xlist, ylist)
## Add Gaussian smoothening to co
sigma = 0.2 # this depends on how
camg = gaussian filter(cam, sigma)

Prediction Dimer
[[8.2898813e-01 4.3244651e-08]]
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PCSMO: REMOVING THE NOISE (AUTOENCODERS)

|

| |

| | |

| | 1

! | |

! ! 1 1

l l ! ‘ l l

: : 1 % J : 1 | !

‘ ] S m——— [ JaEEELEEEEEEE ¢ > pmmmm ] | = N - |

AT ,// d Q \Q S 4 Q /// ’
/ (ke R 256 256 Z S| d

/// /// \9 128 128 // \9 ///

: QQ 64 64 %QQ

» Can we remove the experimental ‘noise’

» Noise = instrument noise + other signals

» We can try to use a denoising auto encoder
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PCSMO: REMOVING THE NOISE (AUTOENCODERS)
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» An unsupervised machine learning approach
» Learn compressed representations

» Can be similar to classical methods like PCA
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PCSMO RESULTS 11l: AUTOENCODER + DISCRIMINATION

» (Qualified) Success :)

40.40 - 45.20 45.20 - 50.00
I

X, Y = np.meshgrid(xlist, ylist)
## Add Gaussian smoothening to c«
sigma = 0.2 # this depends on ho
camg = gaussian filter(cam, sigmj

- smd manen sl A .

Prediction Goodenough
[[0.00203549 0.90476966]]
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MAKING MODELS INTERPRETABLE

Model Interpretability
performance use
D
Sub-human .ebug ane
improve
Increase

Human :
confidence

Learn from
Super-human
SuUCCesss
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INTERPRETING CNNS

» Visualising the activations

» Visualise layer weights

» Retrieving images that maximally activate a neuron
» Filter maximisation

» Embedding the codes with t-SNE

» Class activation maps
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activations = activation model.predict(img tensor)
first layer activation = activations[O0]
plt.matshow(first layer activation[0, :, :, 4], cmap='viridis')
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VISUALISE WEIGHTS

for 1 in range(nlayers):
filters, biases = model.layers[n].get weights()

Most useful for early layers
Working network - smooth weights features

Noisy filters - network not trained long enough or overfit
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N: Regions with CNN features

warped region
T +>{person? yes.
|

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions



https://arxiv.org/abs/1311.2524
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FILTER MAXIMISATION

» Develop a loss function find the image that maximises a
given filter response

# nth filter of the layer considered
layer output = layer dict[layer name].output
loss = K.mean(layer output[:, :, :, filter index])

# compute the gradient of the input picture wrt this loss
grads = K.gradients(loss, input img)[0]

# normalization trick: we normalize the gradient
grads /= (K.sqgrt(K.mean(K.square(grads))) + le-=5)

# this function returns the loss and grads given the input picture
iterate = K.function([input img], [loss, grads])

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html



FILTER MAXIMISATION

» Convert random noise to a maximising image

# we start from a gray image with some noise

input img data = np.random.random((l, 3, img width, img height)) * 20
+ 128.

# run gradient ascent for 20 steps
for 1 in range(20):

loss value, grads value = iterate([input img data])
input img data += grads value * step

SHOW NOTEBOOK EXAMPLE
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ACTIVATION ATLAS

» Take an image - pass through a network
» Map the vectors of different layers using dimensionality reduction of the vectors

» Distance on the map grid corresponds to the the similarity of the vectors
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CLASS ACTIVATION MAPS

» Show which regions of an input are responsible for
classification

Brushing teeth
Bl

arXiv:1512.04150v1



https://arxiv.org/abs/1512.04150v1
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» Global average pooling

» Apply to final convolutional layer

arXiv:1512.04150v1
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CAM HOW IT WORKS

Filter (fk)

==ka y) Se =) Y wifi(z,y)
k

Global averages

e -

Classes

000
k
B

Upsample CAM to original image
size

Directly indicates the importance
of a location (x, y) to the class
activation Sec.
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GRAD-CAM GENERALISING CAM

=33 g
P = =
Z 2.0 5fk(x,y) .
Grad-CAM does not require network

. reconfiguration
The importance of feature map k for

classification c Grad-CAM can work with any network type,

not just CNNs

MC(CB’ y) = ftelLU Z aif k(x’ y)
k )

AA — Tiger Cat

i 5 L;> Wi Image Classification
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Summation of feature map time importance

RelLU ensures that only positive contributions
are measured

arXiv:1610.02391v3



https://arxiv.org/abs/1610.02391v3
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INTERPRETABLE MODELS FOR NEUTRON SCATTERING

@t ¢+ t V@ Sampled data
Finding the right

 § signal can be a

. needle in a
haystack

(0,k) (r. I. u.)
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INTERPRETABLE MODELS FOR NEUTRON SCATTERING

Soft Nax

Build a model
discrimination
network - ask it
WHY it makes the

choice.
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INTERPRETABLE MODELS FOR NEUTRON SCATTERING

6.80 - 11.60 11.60 - 16.40 16.40 - 21.20 40.40 - 45.20 45.20 - 50.00

The network identifies the
same regions of E/Q
space as a trained

physicist.

Intensity

(0K) (r. 1. u.)

Could, in future, guide
experiments of the same

: . i
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SUMMARY

» Inelastic neutron scattering requires complex data analysis
to extract useful information

» Combining physics simulations with deep neural networks
can help in interpreting experimental spectra

» Understanding how neural networks arrive at answers is
generally a good ideal

» Understanding network results can provide guidance on
how to sample experimental space
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