
PART THREE- TRANSFER MATRICES, STABILITY AND TUNES  
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Recall - Hill’s Equation and Solutions

Piecewise Solution Courant-Snyder Solution



The beta function

The beta function is a central quantity in the Courant-Synder formalism

It is a positive function of position in the machine, and has the same periodicity as the lattice itself.

It is determined only by the focusing properties of the lattice.

It is maximised in a focusing quadrupole and minimized in a defocusing quadrupole.

Below is a typical example from a transfer line at the g-2 experiment at Fermilab showing betatron 
oscillations.
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It is a positive function of position in the machine, and has the same periodicity as the lattice itself.

It is determined only by the focusing properties of the lattice.

It is maximised in a focusing quadrupole and minimized in a defocusing quadrupole.

Below is a typical example from a transfer line at the g-2 experiment at Fermilab showing betatron 
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Note that there is a 
horizontal beta 
function and a 
vertical beta 
function.



The beta functions of the LHC
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Beta functions for IP1 and IP5
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β = 55 cm →  σ = 16 μm; D = 0m



Can we write a general transfer matrix between any two points in terms of the ‘lattice 
functions’? 

The transfer matrix in terms of Courant-Snyder parameters  / functions / lattice functions



Can we write a general transfer matrix between any two points in terms of the lattice 
functions? To begin with, we return to the Courant-Snyder form of the solution to Hill’s 
equation, but written slightly differently

where c1 and c2 are constants yet to be determined. If we define the initial conditions 

at the point ‘0’ to be

and write the initial particle coordinates to be x0 and x0’ then we can fix the unknown 

constants.

We also need to recall
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The transfer matrix in terms of the Courant-Snyder parameters  / functions / lattice 
functions
As in the piecewise solutions, we see the expression for x(s) is linear in x0 and x0’.

Taking the derivative of this expression, we can cast this equation into a convenient 
matrix form (as it’s linear)

where



The transfer matrix in terms of the Courant-Snyder parameters  / functions / lattice 
functions

where

The subscripts 0 and 1 refer to the beginning and end of the transfer map.

This means the transfer matrix between two points is purely determined by the lattice 
functions at each point and the phase advance between the points!



The one-turn map

The one turn (one period) map is a very useful quantity (we mentioned it 
previously for piece-wise solutions to Hill’s equation). 

The map for one turn of the ring means we come back to the same s position, and so

And so the one turn map is

and the phase advance for one turn is: 

where we have used



The one-turn map

If we know this map we can determine the lattice functions. 



The one-turn map

If we know this map we can determine the lattice functions. 

We can multiply all the piece-wise matrices for all the elements in the ring together 
to obtain the total matrix for one turn of the machine

which we can compare with



The one-turn map

We now have

We can get the one-turn phase from the trace of this matrix! 

We can get the lattice function from the other matrix elements.

Note for the phase advance to be real-valued and hence stable, we need
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The one-turn map at a different location

If we know the one-turn map at one location, s, is there a way to calculate it at 
another location,  s’, provided we know the transfer matrix M for s to s’?

The answer is yes. They are related to each other by the similarity transform

Similarity transforms come from matrix theory. They preserve eigenvalues, traces, 
etc.

We’ll now denote the matrix M(s’|s) (i.e. the map from s to s’) by 

(redefining m
11

, etc). Let’s use this to calculate how the lattice 

functions transform from place to place if we know the transfer 
matrix.



The transformation of the lattice functions

Starting with the similarity transform, 

We can express the one-turn maps in terms of the lattice functions at the locations 
s and s’
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The transformation of the lattice functions

Starting with the similarity transform, 

We can express the one-turn maps in terms of the lattice functions at the locations 
s and s’

and after a page of algebra we obtain the lattice functions at point s’ (or 1) in terms 
of the lattice functions at point s (or 0) and the elements of the matrix M. The 
answer is

Knowing M, we can transform the lattice functions to any point in the 
beam line. 



Courant-Snyder parameter evolution in a drift

E.g. In a drift space of length L we have

And so



Courant-Snyder parameter evolution in a drift

E.g. In a drift space of length L we have

And so

The lattice functions evolve A particle evolves



The phase advance and tune

Several times we have used the phase advance for one turn of the closed orbit ( or 
any period of a periodic structure). It is

We often call the phase advance for one complete turn of a ring the tune, and 
express it in units of 

There is one tune for each plane, including the longitudinal plane.
It’s an important function for beam stability.
Note we can evaluate the tune at any point in the ring and always get the same 
answer (a property not shared by α, β and γ)

(or Q)



The phase advance and tune

Several times we have used the phase advance for one turn of the closed orbit ( or 
any period of a periodic structure). It is

We often call the phase advance for one complete turn of a ring the tune, and 
express it in units of 

(or Q)

A simple approximation to 
the tune can come from 
the average value of the 
beta function β and 
average radius R.



Applying beam dynamics tools to a lattice

Injection

Extraction

Collimation

R.F.

Dipoles

 Focusing 
elements

Dipoles
Let’s apply the 
tools we’ve 
developed to a 
storage ring.



Bending

The first task is to define the curved reference orbit using a layout of dipole magnets. This 
forms the fundamental footprint of the machine and defines our coordinate system for 
future analysis. E.g. Fermilab g-2 storage ring  

ds
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ER

The FODO cell

Recall that two quadrupoles of opposite polarity could provide focusing in both planes at the 
same time. This is the fundamental building block of the FODO lattice.

The basic building block of this periodic structure is the FODO cell, consisting of a horizontally 
focusing quadrupole (F), a space (O), a defocusing quadrupole (D) and a space (O).

We can repeat the FODO cell to make a FODO channel. Note the drift space (O) 
can contain nothing, a bend, some diagnostics, an RF cavity or even a whole 
particle physics experiment!



The dynamics in a FODO cell

To understand the beam dynamics in a FODO cell we need to compute the one-period map.

To do this we simply multiply the matrices of the components of the cell together, 
conventionally starting in the middle of one of the quadrupoles, which means we start and 
end with a quadrupole matrix of half strength (length)

Recall 

and we multiply these matrices in sequence

First element!



The FODO cell

Let’s be concrete and take some real numbers

K = +/- 0.541244 m-2

lq = 0.5 m

L = 2.5 m

Multiplying out the matrices

We obtain



The FODO cell

Let’s be concrete and take some real numbers

K = +/- 0.541244 m-2

lq = 0.5 m

L = 2.5 m

This is the one period map of the FODO cell, and so has the form

Recall



Properties of our FODO cell

Is the FODO cell stable? For this we need the trace of the one-turn map to be less than or equal 
to 2. Here it is 1.414. So this FODO cell will give stable dynamics in this plane.

What is the phase advance per cell? Recall

The phase advance per cell is 45 degrees. This is a “45 degree cell”.

What are the lattice functions at the middle of the focusing quadrupole? We use

 

And find that β=9.645 m and α=0.
i.e. The beam size is at a maximum. 



A thin lens FODO cell

We can also make our life easier and compute the matrix for our FODO cell using the thin lens 
matrices. Again, starting from the middle of QF we have

We end up with the matrix in terms of L and f

We can ask for what parameters the FODO cell gives stable motion. This means

We can also write the cell phase advance in terms of the parameters:



Transfer line stability

Our stability equation from the previous slide seems slightly odd at first

It seems to say motion is stable when focusing is weak…

This makes sense though. If the focussing is too strong then the periodicity of beta can’t match 
the periodicity of the lattice. 



Beta in a FODO cell

Finally...
We can now compute all the lattice functions for a FODO cell. 
Note that β

x
 is maximised in the middle of the focusing quadrupoles, and this maximum 

depends solely on the cell length and phase advance.

Using

We get

In the D quad



ERROR AND RESONANCES



A reminder of some of the terms we ignored...
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Real life and field errors

Recall that we started with an arbitrary magnetic field and made an expansion

where the first term is the dipole (steering) field,  the second is the quadrupole(focussing)  
term, the next is the sextupole term, etc.

To create these fields we build magnets with a specified field quality. These magnets will 
never be perfect. Therefore any magnet will have small contributions of higher-order field 
components.

In addition, magnets will not be perfectly aligned. E.g. if a quadrupole is displaced it will 
apply an additional dipole field to the beam.

Finally, the magnet strength may differ from the design value and may vary with time. E.g. 
a power supply may deliver too much or too little current to an electromagnet.

In this lecture we include the effects of some of these  ‘field errors’ into our solutions to 
Hill’s equation.



Closed orbit distortion

The design orbit defined by all of the dipoles in the ring is  sometime refered to as the  “closed 
design orbit”.

This is the orbit a reference particle would follow in a perfect situation.

If there is a small additional dipole kick – the orbit will distort, and this distortion will affect  the 
orbit around the entire ring. i.e. the effects of a small kick at any location are not localised; they 
will be seen everywhere in the ring!

This closed orbit distortion defines a position-dependent orbit offset around the ring. In effect the 
particles no longer undergo betatron oscillations around the design orbit but around a new closed 
orbit

x(s)=xb (s)+xco(s)



Closed orbit distortion

Imagine we have a “dipole kick” error of strength ΔB and length l, at some location s0

Recall the transport map in terms of the Twiss parameters

• The M
12

 element shows how a horizontal angular kick (Δx’) will translate into a 

horizontal displacement at another point in the ring. 
• On each “turn” we experience another kick. 
• We need to apply this map for many turns, summing over the kicks, to see how the 

displacement accumulates.  
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Closed orbit distortion

A short(ish) analysis adding up the effects from each kick after a large number of turns 
gives the distorted closed orbit in terms of the beta function at s

0
 and the beta function at 

any other position in the ring s.

We can minimise this distortion by monitoring the position of the beam and using orbit 
correction magnets.

xco(s)=Dq
b(s0 )b(s)
2sin(pn )

cos(pn - y(s) - y(s0 ) )



Resonances

Our expression for the closed orbit distortion has an overall factor of

 

This means that every time the tune becomes an integer, the argument of the sine becomes a 
multiple of π, and this factor diverges.

This is an example of resonance.

Imagine the tune was 1 in a machine. 
● Then the particle would encounter a dipole error at the same point in the machine and at 

the same phase in its betatron oscillation on every turn. 
● This means the effect of the dipole error accumulates constructively on every turn.
● We avoid this by minimising magnet errors and staying away from dangerous values of the 

tune. 

NB Consider what happens to the one turn map in this case.



Resonances

Our expression for the closed orbit distortion has an overall factor of

 

This means that every time the tune becomes an integer, the argument of the sine becomes a 
multiple of π, and this factor diverges.

This is an example of resonance.

Imagine the tune was 1 in a machine. 
● Then the particle would encounter a dipole error at the same point in the machine and at 

the same phase in its betatron oscillation on every turn. 
● This means the effect of the dipole error accumulates constructively on every turn.
● We avoid this by minimising magnet errors and staying away from dangerous values of the 

tune. 

More generally resonances occur when



Quadrupole errors

Imagine we have an extra quadrupole in our ring (or a quadrupole field error) of strength k and 
length L at location s0. Unlike the dipole error, this will change the focussing properties of the 

lattice causing:

1)A change in the beta function
2)A change in the tune.

Recall that the tune is given by:



Quadrupole errors

Imagine we have an extra quadrupole in our ring (or a quadrupole field error) of strength k and 
length L at location s0. Unlike the dipole error, this will change the focussing properties of the 

lattice causing:

1)A change in the beta function
2)A change in the tune.

● The perturbed tune increases if k > 0, which corresponds to a focusing quadrupole 
i.e. focussing more means more oscillations. So we get a positive tune shift for 
increased particle focusing.

● This means a pure quadrupole field error would shift the tune one way in one 
plane and the other way in the other plane

● However, we can also get tune shifts from space-charge,  beam-beam effects and 
electron clouds, which can cause same-sign tune shift in both planes

● The effect of the quadrupole error is proportional to the local beta function. This 
is a common feature -  the beta function magnifies local field errors.

Change in the tune:



A distribution of quadrupole errors

If we have a distribution of quadrupole errors around the ring, the approximate tune 
shift can be calculated from

This effect can also be used deliberately to measure the beta functions. 

● We vary the strength of a single quadrupole in the ring.
● We measure the tune.
● The response is proportional to the beta function at the quadrupole. 

In general the beta function tells you how sensitive the beam is to perturbations.



 Beta beat

Db(s)
b

=-
kb(s0 )
2sin(2pn )

cos(2pn - 2y(s) - y(s0 ) )

The change in the beta function is itself a function of s, and oscillates 
twice as fast as the original beta function:

This is why it’s called a ‘beta beat’.

The strength of the distortion is proportional to the quadrupole error (k) 
and to the beta function at the position of the error s

0
. 

As before we have a sinusoidal term in the demoninator that depends on 
the tune.

This gives us a ‘half-integer resonance’. 



Resonance diagram

The ‘order’ of the 
resonance is m+n

Similarly, higher-order resonances are generated by errors in high-order multipoles.



Beta beat at the LHC



Summary

● Dipole Errors
● Introduce closed orbit distortion
● Betatron oscillations occur around the new orbit
● Give resonance on integer values of the tune

● Quadrupole Errors
● Introduce a ‘beta beat’
● Introduce a tune shift
● Give resonances on half-integer values of the tune.

● Detailed simulation needed to calculate tune and avoid all resonances. 
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DISPERSION, CHROMATICITY, EMITTANCE



Off-momentum particles

So far we have considered beam motion where all particles have the design momentum p.
We refer to these particles as on-momentum particles.

In general, a particle’s momentum will be p + Δp

Recall in our solutions to Hill’s equation we had

Which we can write as

Expanding the right hand side and dropping small terms we obtained 

d =Dp/ p



The inhomogeneous equation of motion

Replace the momentum of an on-momentum particle with that of the off-momentum particle 
expressed in terms of the deviation ‘delta’

Expand the vertical magnetic field and binomially-approximate the momentum 

Plug these results back into the equation of motion 

Expand all of the brackets, keeping only terms linear in x and δ, and using

we obtain the inhomogeneous equation of motion: 
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Replace the momentum of an on-momentum particle with that of the off-momentum particle 
expressed in terms of the deviation ‘delta’

Expand the vertical magnetic field and binomially-approximate the momentum 

Plug these results back into the equation of motion 

Expand all of the brackets, keeping only terms linear in x and δ, and using

we obtain the inhomogeneous equation of motion: 



Homogeneous and inhomogeneous Hill’s equations

Now we see a little more structure to Hill’s equation

It looks like the homogeneous version (below) apart from a term linear in δ

The extra term on the RHS will drive the x motion of an off-momentum particle, which we shall 
call horizontal dispersion, or simply dispersion.

The general solution for the horizontal motion of a particle is given by the sum of two terms : 
the betatron motion term (soln to homogeneous eqn) and an off-momentum dispersion term 
(soln to inhomogeneous eqn):

We can think of xi(s) as a closed orbit term, around which xh(s) oscillates.

Let’s define a special orbit, D(s), which is followed by a particle with δ=1



Dispersion

Our newly-defined dispersion function D(s):

• Is the orbit of a particle with δ=Δp/p=1.

• Obeys Hill’s equation.

• Determines the orbit of any (slightly) off-momentum particle

 This is similar to a dipole error closed-orbit distortion.

Typical values:



Dispersion

Central design orbit is 
closed for p=p0

Closed orbit for p < p0 

Closed orbit for p > p0 

Lattice 
property

Particle’s 
momentum 
error



Calculating D(s)

We need to find a solution to the inhomogeneous Hill’s equation and add it to the general 
solution of the homogeneous equation.

For D(s) on the closed orbit we assume the only field is the dipole field. This means that D(s) 
is a solution of

 We have already solved the homogeneous equation (below).

We only need to find a particular solution of the inhomogeneous equation and add this 
solution to the solution of the homogeneous equation. If the RHS is just a constant,  then a 
valid choice of a particular solution is also a constant 



Calculating D(s)

Inserting this solution for D  into the inhomogeneous equation above immediately gives

And so our general solution for D(s) is



The matrix equation for D(s)

As before we determine A and B using the initial conditions at s=0

Inserting these into our general solution yields

Hence we can write the dispersion function as

Which we can write as a matrix equation

D(0)=D0 ¢D (0)= ¢D0



The matrix equation for D(s)

As before we determine A and B using the initial conditions at s=0

Inserting these into our general solution yields

Hence we can write the dispersion function as

Which we can write as a matrix equation

D(0)=D0 ¢D (0)= ¢D0



The dispersion

Note the upper-left 2x2 matrix is just the transfer matrix for a dipole we have already derived. 

The additional terms in th dipole transfer matrix produce or ‘drive’ the dispersion.

As the motion is given as the sum of the betatron motion and the dispersion

We can write the general motion as a matrix equation



Dispersion in  a short ‘sector’ dipole and a quadrupole

For a short sector dipole with a small bending angle θ 

we can find a simplified matrix from its entrance to its exit

This is useful for quick calculations and corresponds to a thin-lens kick for an off-momentum 
particle. 

In a quadrupole the dispersion function is focussed/defocussed, but there is no driving term 
for the dispersion and so the 3x3 map is given by



Dispersion in a FODO cell

Consider a FODO cell with thin lens quadrupoles and dipoles in the drift sections. We can 
calculate dispersion in the same way we computed the beta functions in a FODO cell 
previously.

Start at the middle of the F quad, so we have a magnetic arrangement

Looking at only the x motion in the thin-lens and small angle approximations we find 

which evaluates to 

Here L is the length of each dipole, θ is the bend angle and f is the quadrupole focal length. 
The upper 2x2 is the same as previously calculated, but now we’ve added the dispersion.
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Dispersion in a FODO cell

By symmetry, the dispersion in the middle of QF must satisfy the closed orbit condition

and if we solve the resulting equation, noting that in  a FODO cell the phase advance is given 
by

we get the dispersion in the middle of the QF

we can get the dispersion elsewhere by transforming this vector using our 3x3 maps. For 
example in the middle of QD we get



Simulating dispersion

D(s) is created (or driven) by dipoles, focused by quadrupoles and will grow in 
a drift if the angular dispersion D’ is non-zero



Controlling dispersion

Dispersion-free lattices are important in many applications. These allow bending of 
the beam without generating dispersion.

Examples are: Chasman-green, triple-bend achromat,…

We also can build a dispersion suppressor, which matches the periodic dispersion in 
an arc (perhaps made of FODO cells) into a dispersion-free straight section. 

We can also displace the beam transversely without generating dispersion using a 
sequence of  bends, sometimes called a geometrical achromat.

These will be covered in later courses….
But let’s look briefly at some examples



The double bend achromat (DBA) 

If the dispersion function is non-zero the orbits of particles depend on the particles’ momenta. 
An “achromatic system” means the beam positions at each end do not depend on momentum.

i.e. we require an arrangement of magnets, including bends, which does not generate any 
dispersion through the structure. 

A single bend is not achromatic. In principle, dispersion can be suppressed by one focusing 
quadrupole and one bending magnet. 

With one focusing quad in the middle between two dipoles, one can get the achromat 
condition, which means no additional dispersion is driven by the structure.

Due to the mirror symmetry of the lattice w.r.t. to the middle quadrupole  D’ should be zero in 
the centre of the lattice. This is the so-called double bend achromat (DBA) structure. 

We generally need further quads outside DBA section to match the betatron functions, tunes, 
etc. 

Similarly, one can design triple bend achromat (TBA), quadrupole bend achromat (QBA), and 
multi-bend achromat (MBA or nBA) structures. 



DBA structure with a single quadrupole (sometimes called Chasman-Green)



A DBA structure with a quadrupole triplet (vertical)



The long straight section of the LHeC collider (optical work done by CI)



MAX-IV (Gus Perez-Segurana CI)

In addition to affecting the transverse 
motion, dispersion also has longitudinal 
effects... 



MAX-IV (Gus Perez-Segurana CI)

In addition to affecting the transverse 
motion, dispersion also has longitudinal 
effects... 

Higher-order terms



Momentum compaction

A momentum offset changes the horizontal orbit of a particle through dispersion.

Ideally, a machine with only horizontal bends does not generate any vertical dispersion

However, dispersion does generate a longitudinal effect, as the total circumference of an off-
momentum particle’s trip around the machine will be different to the reference particle.

Let’s calculate the path length difference. Consider this situation: 



Momentum compaction

The path length deviation is given by  

The change in circumference of the machine is given by an integral over the whole ring

For the case where the closed orbit distortion is given by a momentum error

We define the linear momentum compaction factor

Therefore the linear momentum compaction factor is given by

so
DC
C

=acd =ac

Dp
p



Momentum compaction
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The change in circumference of the machine is given by an integral over the whole ring

For the case where the closed orbit distortion is given by a momentum error
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Therefore the linear momentum compaction factor is given by

so
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Dp
p



Typical lattices and momentum compaction

The momentum compaction factor is an important lattice design parameter

If the orbit is exactly circular we get

A large value means the path length varies a lot for off-momentum particles. This means the 
particles tend to spread out and the bunch length becomes long.

Similarly, a small value means a shorter bunch length. 

Typically <D> > 0. In this case the momentum compaction factor is > 0 and the orbit gets longer 
for positive momentum deviations.

An isochronous lattice is designed to counter this natural tendency, i.e. path length doesn’t 
depend on momentum.



Chromaticity

Consider some particles with slightly different momenta passing through a FODO 
cell

Higher momentum particles have a higher rigidity, so experience weaker effects 
when passing through magnetic fields. This means focusing is momentum-
dependent and so the machine tune will depend on momentum deviation.



Chromaticity

If a machine’s tunes depend linearly on the momentum deviation then

where the linear chromaticity is ξ. To analyse this we return to the equations of motion, but this 
time keeping all terms linear in x and δ. Recall 

This time, we keep the term (x.δ) we previously dropped. After dropping higher order terms we 
obtain the equation of motion with both a dispersion term and a ‘chromatic’ term

As usual
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As usual



Chromaticity

We already know how to compute the effect of a quadrupole field error.
Recall the tune shift from a quadrupole error k(s) in our lattice

We can think of this chromatic term as a quadrupole field error of strength

A similar analysis in the vertical plane would have a found a chromatic perturbation of

Which means we can write down the tune-shift arising from the chromatic 
perturbation term, 

An expression which is linear in the momentum deviation. 



Natural Chromaticity

The tune change per unit delta is the linear chromaticity we defined earlier

We call this chromaticity ‘natural’ as any lattice with quadrupoles generates this chromaticity. 
Similarly in the vertical plane

As the beta function is biggest in focusing quadrupoles the natural chromaticity is normally 
negative in both planes.

The linear chromaticity is sometimes written as Q’

For a FODO cell we can show that

1/ r2 (s)»0



Is chromaticity bad?

Chromaticity is naturally generated by any focusing lattice.  So when we have non-zero k we 
have chromaticity, and it tends to be negative in both planes.

It tells us how much the tune shifts per a unit shift in the momentum deviation.

Since any beam will an energy/momentum spread, chromaticity tells us the spread of the tune 
of the beam.

Tune is therefore a blob not a point in tune-space.
This is a plot of tune at HERA, showing the spread of tunes due to uncorrected chromaticity. It 
crosses many resonances….



Tune after chromaticity correction

We need a mechanism to correct for chromaticity.

Chromaticity originates when off-momentum particles ‘see’ a different 
quadrupole field than an on-momentum particle.

So we need a correcting device which has some kind of momentum-
dependent focusing…..



Sextupoles

A sextupole field has field components given by

Note the field is quadratic in x and y, and also (for the first time) we see products of x and y 
in our equations. A sextupole couples the horizontal and vertical beam motion.

where we define the sextupole strength by



Sextupoles

An off-momentum particle passing through the sextupole has displacement

and so the fields seen by the particle are found by substitution

There are many terms here, some helpful and some harmful. The helpful ones for us are



Sextupoles

An off-momentum particle passing through the sextupole has displacement

and so the fields seen by the particle are found by substitution

There are many terms here, some helpful and some harmful. The helpful ones for us are



Sextupoles

The dispersion effectively makes the sextupole into a quadrupole with a momentum-dependent 
focusing gradient

This means we can compensate the chromaticity in the ring, and reduce the tune spread, by 
adjusting the sextupoles. 

But it’s not all perfect. Some sextupole terms we ignored introduce non-linearities and 
coupling into our accelerator ring. 

It is difficult to represent a sextupole in our linear 
formalism, and often the best way to understand the 
impact of sextupole fields is to track particles with 
matrices, stopping to be more careful every time a 
sextupole is encountered. This leads to the study of a 
machine’s dynamic aperture (i.e. how large can a 
particle’s deviation from the closed orbit be if we want 
the particle to  survive for many turns.)



Beams of particles and emittance

So far we’ve defined ‘emittance’ as a property of  each particle. In the Courant-Snyder analysis 
we showed the motion of an individual particle is completely specified by its emittance and 
initial phase. 

Different particles have different emittances and initial phases but they all have the same 
Courant-Snyder functions.

For example, the particle with x=x’=0 will have zero emittance and always stay at x=x’=0. This is 
the ideal particle. 

But, we always have more than one particle in our beam and so need to understand how to 
characterise a beam of particles, each with their own emittance.



Beams of particles and emittance

We can plot the emittance (also known as the Courant-Snyder invariant for all the particles in a 
beam

We choose the emittance of one particle to represent the emittance of the entire beam.
For example, we can characterise the beam by the emittance of the particle for which 95% of 
the beam particles are within the ellipse of this particle.

Another useful definition, when dealing with complicated distributions, is the RMS emittance, 
which we find by averaging over the beam distribution



Beam moments

For a complex and non-linear beam distribution, we often work with the moments of the beam 
distribution where ρ here is the particle density not the radius of curvature!



Liouville’s theorem

Liouville’s theorem : the density of points representing particles in 6-D 
(x, p) phase space is conserved if  all forces are conservative and 
differentiable.

Radiation and dissipation do not satisfy this requirement, but 
magnetostatic forces and (Newtonian) gravitational forces do. 

There must be no (or very slow) time-dependence in the system.

Note: acceleration keeps (x,p) phase space constant, but reduces (x, x’) 
phase space, so there is no violation of Liouville theorem.  

Transfer maps derived from a Hamiltonian have a mathematical property 
called symplecticity, which is linked to Liouville’s theorem. But this is 
beyond this course…

Sympleciticty in 2D phase space is equivalent to det(M)=1

J. Liouville
(1809-1882)
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