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Additional learning material for this course

Course Material

CI Courses
https://www.cockcroft.ac.uk/education/lectures

CERN Accelerator Schools 
https://cas.web.cern.ch/

Accelerator Science
Beam Dynamics
RF Systems
Magnets and Radiation Sources
Etc

Books (mostly available online)

Appleby et al, “The Science and Technology of 
Particle Accelerators”
 
Wolski, “Beam dynamics in high energy 
particle accelerators”

Lee, “Accelerator physics”

Wiedemann, “Particle accelerator physics”

Chao and Tigner, “The handbook”

Wille, “The physics of particle accelerators”

Forest, “Beam dynamics”

Wangler, “RF linear accelerators”

And many more….

https://www.cockcroft.ac.uk/education/lectures
https://cas.web.cern.ch/


PART ONE - INTRODUCTION



What is beam dynamics?

Particle accelerators are arrays of magnets and accelerating structures 
through which charged particles move in a predictable fashion, so that they 
can be thought of as forming a beam of particles.

In the absence of the external forces provided by a particle accelerator, a 
bunch of charged particles will diverge.

Beam dynamics is the study of the motion of these particles :
Individually
Collectively

Beam dynamics allows us to
Optimise, upgrade, operate and commission accelerators
Design new machines e.g. a new collider like the EIC
Design novel machines e.g. ERLs, non-scaling FFAGs, ...

Essentially, we want to solve the (relativistic) Lorentz force equation for each 
particle in a bunch of particles travelling through electromagnetic fields.

The standard approach to this problem and the standard terminology have 
been developed for common circular accelerators such as synchrotrons. 
This is where we’ll start.   



Example - DIAMOND light source (an electron synchrotron)



Example - The LHC (a proton synchrotron)



Example - LHC parameters
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Energy of 
each particle



Example - LHC parameters



The closed orbit

There is a “closed design orbit” around the ring.

To maintain long lifetimes we need to focus the beam such that all particles oscillate 
around this design orbit with a small oscillation amplitude.

An example below shows the LHC beam (with size of a few microns) oscillating around 
the closed orbit (~27km long) with deviations of only a few milimetres.
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General simplifying assumptions (not always valid!)

1)The machine is periodic. 

2) The particles spend a long time in the machine. 

● Their motion is stable.

3)The motion of an individual particle does not have the same periodicity as the 

machine, but the envelope of the motion (considering the motion of many 

particles or of one particle orbiting the machines many times) follows the 

machine periodicity.

4)The ‘longitudinal’ and ‘transverse’ motions of the particles happen on very 

different timescales, and so can be treated independently. 



A simple harmonic oscillator

Let’s consider another simple system which displays stable oscillations.
Consider a mass, m, on a spring with spring constant k.

x

If the mass is displaced from equilibrium then the force on the mass from the spring 
returns the mass back towards the equilibrium point.

F



A simple harmonic oscillator

The force is given by

When we use Newton’s law we get the equation of motion

This differential equation has an oscillatory solution (with two constants)

Which we can also write as

w =
k
m

or equivalently



A simple harmonic oscillator with the opposite force

Consider a ‘negative’ spring constant

Which leads to the standard equation of motion

Note the force is now pushing the particle to larger amplitude, and we 
can write the solution (again with two constants) as

w =
k

m



The Lorentz force law

We need to know what force plays the role of the 
spring in our mass-spring analogy.

The force on a charged particle of charge q from an 
electric field E and magnetic field B is given by the 
Lorentz force law

E and B themselves are vector fields which can be 
calculated from Maxwell’s equations in the presence of 
sources and boundary conditions (see courses on magnet 
design and rf cavities).

Often the particle speed in an accelerator can be 
approximated by the speed of light.



The Lorentz force law

We use  electric fields to accelerate particles, and generally use magnetic fields to steer 
the particles. The force from a magnetic field benefits from the presence of the velocity 
in the Lorentz force law 

Consider a uniform magnetic  field perpendicular to the particle velocity

The magnetic force on a particle of velocity ≈c and charge q can be written 
as

Which we could write in terms of an equivalent electric field

NB - It is challenging to produce electric fields above 1 MV/m !
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Transverse motion in an accelerator

We’ve seen that the simple harmonic oscillator equation, with different signs 
for the spring constant, can lead to oscillating and diverging solutions.

In the next lecture we will show that the basic equations of transverse motion 
for a particle in a simple accelerator take the form:

where s is the distance along the closed orbit. K(s) can be thought or as a 
spring constant, and we expect that if it is positive we will get oscillating 
solutions, and it is negative we will get diverging solutions, just as in our 
simple case of the simple harmonic oscillator.  

We can think of an accelerator as being made up of piece-wise regions with 
different sizes and signs of the spring constant.



A circular design orbit

Let’s start by assuming we apply a 
constant, uniform magnetic field to give 
circular motion.

The force on the particle is always at 
right-angles to the motion and given by 

We equate this to the centripetal force

Here, γ is the Lorentz factor. 
Warning! Later we will use it 
to denote a different quantity! 
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A circular design orbit and beam rigidity

A particle with relativistic 
momentum p and charge q in a 
guide field B will follow a circular 
path of radius ρ.

The product of the field and the 
radius is a function only of the 
particle momentum and charge. 

p/q  appears in the normalisation 
of many physical quantities in 
beam dynamics. 

The quantity Bρ, called the beam rigidity, is 
often used instead of p/q.

NB particles in a bunch may have momenta 
that differ from ‘p’ which is the reference 
momentum.



Beam rigidity

For the highly-relativistic case  (often 
encountered) 

We can calculate the beam rigidity from 
the easy-to-remember equation

which is useful when working with high 
energy colliders, as the beam energy is 
often expressed in units of GeV.
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Beam rigidity

For the highly-relativistic case  (often 
encountered) 

We can calculate the beam rigidity from 
the easy-to-remember equation

which is useful when working with high 
energy colliders, as the beam energy is 
often expressed in units of GeV.
I am using ‘0’ here to emphasise that we 
are talking about the reference (design) 
energy and momentum.

We will generally normalise magnetic 
field strengths to the beam rigidity, 
and obtain energy-independent ‘k 
values’, e.g. for a uniform B field



The magnetic guide field (dipole magnets)

Consider the LHC design

x

z
dipole 
field

Image of a dipole magnet.
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Oscillations and focusing

Consider a positively charged, constant energy 
particle in a fixed dipole field (into the page).

The reference particle executes ‘cyclotron 
motion’.

Other particles of the same energy but at 
different starting positions execute cyclotron 
motion of the same radius.

Compared to the reference trajectory, this looks 
like an oscillation. This is called a betatron 
oscillation.

The number of oscillations per turn is called the 
‘tune’.

In this case, the tune is 1.

Reference particle

Off-axis particle

geometric focusing



Oscillations and focusing

x’ dp/p

s

y

y’

This effect only applies to small displacements in the horizontal position.

The coordinate system is x (horizontal), y (vertical), z or s (along the design orbit).  
 



Focussing magnets

● The particles in a bunch will diverge unless focussed.
● The angle of deflection of a particle moving a distance l perpendicular to a 

uniform magnetic field can be found from integrating

● To get focussing in all directions we need the B field to be azimuthal around 
the particle trajectory. To get a focal point we need the magnetic field and 
deflection angle to be proportional to the radial distance from the design orbit, 
as in a conventional optical lens.

● This principle is used in specialised magnets such as Lithium lenses, but the 
focussing achievable is quite weak, and it requires the particle beam to pass 
through a physical lens.

● This isn’t generally suitable for high energy particles... 
● The best solution is generally to use quadrupole magnets (strong focussing).

⇒
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A (normal) quadrupole

For positively charged particles moving into 
the page, this quadrupole (above) gives a 
focusing force in x. However it defocuses in y, 
due to Maxwell’s equations. The opposite is 
shown in the diagram to the right.

(Normalised field 
gradient k1)



Defocuses in x for positive particle moving into page. 



The expansion of the magnetic fields

We now derive the equations of motion for a particle in an accelerator containing 
dipoles and quadrupoles

1) We consider the motion of the particles w.r.t. a design orbit

2) We assume the deviation of the particle from this design
orbit is small, so x,y << the bending radius

Assumption (2) means that we only need to take into account linear terms in the 
dependence of the field B w.r.t. x and y.

So it makes sense to make a Taylor expansion of B around the design orbit and 
normalise to the beam rigidity. E.g.
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A storage ring, with a design orbit determined by dipoles and beam focussed around the 
design orbit by quadrupoles.

Dipole

Quadrupole



A combined function magnet

We can also provide the magnetic field 
gradient needed for beam focusing by 
tilting the magnetic pole faces of a 
dipole magnet.

Notice that there is a component of B 
such that Bx  is proportional to y.

So this magnet has both a dipole and a 
quadrupole component (giving some 
vertical focussing): a combined 
function magnet.

(The pole face tilt must be small for 
stable motion. This style of focussing 
where the horizontal focussing is only 
from the dipoles, and a small amount 
of vertical focussing is used, is often 
called ‘weak focusing’).



The equations of motion in an accelerator

We continue to derive the equations of motion for a particle moving under the 
influence of dipole and quadrupole fields in an accelerator. The steps we will follow 
are

1) Define a ‘curved’ coordinate system and its coordinates

2) Calculate the position, velocity and acceleration vectors in this coordinate system. We 
are only concerned with the transverse motion around the design orbit, so we will discard 
other terms.

3) Use the Lorentz force law to calculate the forces on the particle, and write down an 
expression for the change in particle momentum.

4) Change the independent variable from time to position along the design orbit.

5) Expand the equations and approximate them as linear in x and z.

6) Specialise to the case of pure dipole and quadrupole fields.

The result will be two second-order ordinary differential equations (one for the 
horizontal plane and one for the vertical).



Our coordinate system and our coordinates (x, z, s)

ρ

s

θ

When discussing motion previously we 
used ‘y’ as our vertical coordinate. In this 
section we use ‘z’. You’ll see both in the 
literature.

We’ll use a curved coordinate system, 
with this curvature produced by a local 
dipole field.

The curved reference trajectory is 
normally called the design orbit, and the 
coordinate system moves with a 
reference particle around the design 
orbit defined by the dipoles.

We’ll denote the local curvature of the 
orbit as ρ.

The distance along this design trajectory will be s. The 
total length of the design orbit is therefore

Our coordinates (x and z) represent deviations with 
respect to the design (ideal) orbit, and we assume these 
deviations will be small (x is typically a few millimetres).

In addition to the positions (x and z) we also consider the 
slopes dx/ds=x’ and dz/ds=z’



Coordinates are with respect to the design orbit

The path length along this orbit is labelled by s.

Fow now, we start off with time (t) as the independent variable.

At any point  on the design orbit we have a coordinate system (x, z, s).

For simplicity, we assume the design orbit lies in the horizontal plane.



Motion of unit vectors in this coordinate system

Evaluating       and      is messy. We do it 
here for completeness. We are more 
interested in the result than the method. 

Motion of the unit vectors of our rotating coordinate system wrt 
static unit vectors :

From geometry.



Changing the independent variable from theta to t

Convert from to

The position vector of any particle can then be written with respect to a 
point  r0 on the design orbit as

where 

d
d

dt
d

ds=rd Þ
d
dt

=
1

r

ds
dt
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Velocity and acceleration in the comoving frame

Evaluate the first 
and second 
derivatives with 
respect to time…

Now we make one last 
transformation. Instead of using 
the derivative with respect to time 
for ‘x’ and ‘z’, we can use the 
derivative with respect to ‘s’.
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Changing the independent variable from time to path length

…and the same for z of 
course.



Changing the independent variable from time to path length

…and the same for z of 
course.

+ ...

+ ...

For simplicitly, we’ll just 
look at the first term of 
the second derivative we 
obtained previously.

We repeat this for the 
other components to get 
the expression on the 
next slide.



Changing the independent variable from time to path length



Changing the independent variable from time to path length

Ignoring any rapid changes in the 
velocity of the particles as they 
pass through the magnetic fields, 
we can drop terms proportional 
to 22 dtsd



Changing the independent variable from time to path length

Ignoring any rapid changes in the 
velocity of the particles as they 
pass through the magnetic fields, 
we can drop terms proportional 
to 22 dtsd

That gives us everything we need for the Lorentz force 
equation apart from the B field.



Dipole and quadrupole fields 

Now, consider a linearised magnetic field (dipoles and quadrupoles only)

Recall
● we assume the dipole magnets are providing horizontal bending only
● the quadrupole focuses in the x-s plane if k<0 and focuses in the z-s 

plane if k>0

In some books it’s assumed 
that the particles are 
electrons and hence q=-e 
which changes the sign of k.



Equations of motion in dipole and quadrupole fields 

Combining our equations for the velocity, acceleration and linearised magnetic field, 
we have

Acceleration in the ‘s’ 
direction due to the 
magnetic field will be 
negligible. 
We ignore it here...



Equations of motion in dipole and quadrupole fields 

Combining our equations for the velocity, acceleration and linearised magnetic field, 
we have

Consider z motion first

NB x and z are small.



Equations of motion in dipole and quadrupole fields 

Now consider x motion

Note that in general ρ and k are functions of s.

Assume 
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Finally we have Hill’s equations

So, after some effort, we derived Hill’s equations. They are linearised second order 
differential equations for the transverse variables x and z in dipole and quadrupoles 
fields in a particle accelerator. 

In the equation for x, g comes from the quadrupoles and there is also natural 
focusing from the dipoles in the plane of curvature.

We can compactly write Hill’s equations in both planes, denoting x or z by u and 
writing the position-dependent ‘spring constant’ as K



Finally we have Hill’s equations

Where the periodic functions of s describe the lattice

In these equations, ρ comes from the natural horizontal focusing in dipoles and 
the gradient term represents the strong focusing in quadrupoles. 



PART TWO- SOLUTIONS TO HILL’S EQUATION



Solutions to Hill’s Equations

● We will look for two kinds of solutions to Hill’s equations

● Piece-wise solutions for separate magnets (maps)

● General solutions for the entire orbit (Courant-Snyder formalism)

● We will then compare the two kinds of solutions



Solution of piece-wise Hill’s equations

 
 These are our equations of motion.

If K is constant then these equations look 
like  the equation for a simple harmonic 
oscillator.

So we know the solution from out studies of a mass on a spring! 
Let’s guess at

Take the derivatives and substitute into the equation of motion 

K>0



Solution of piece-wise Hill’s equations

So this solution seems to work. 
NB We assumed K > 0 to get an oscillatory solution. 

We can fix the integration constants from the initial conditions

Now, we can write down the evolution of the variables x and x’ in a region with 
constant and positive K as 

K>0



Solution of piece-wise Hill’s equations

Hor. Focusing Quadrupole  K > 0:

0 0
1

( ) c o s ( ) s i n ( )x s x K s x K s
K

0 0( ) s i n ( ) c o s ( )x s x K K s x K s

For convenience expressed in matrix formalism:

0

1
c o s ( ) s i n (

s i n ( ) c o s ( )

f o c

K s K s
KM

K K s K s

s = s0
s = s1

01

*
s

f o c

s
x

x
M

x

x

0s

K

x
axx

xaxx

0
20

010

,)0(

,)0(
determine a1 , a2 by boundary conditions:

What does this mean? Notice that the x’ variable receives a negative kick if x
0
 is 

positive, which corresponds to pointing the particle more towards the axis

Also note that the final coordinates are linear combinations of the initial coordinates. 
This is a direct consequence of linearising the equations of motion. 

We can write the solution very compactly as a matrix equation

So a particle is represented by x and x’, i.e. the vector (x,x’)



Solution of piece-wise Hill’s equations (with negative ‘spring constant’)

1
c o s h s i n h

s i n h c o s h

d e f o c

K l K l
KM

K K l K l

hor. defocusing quadrupole: 

drift space:  
K = 0 

1

0 1d r i f t

l
M

!     with the assumptions made, the motion in the horizontal and vertical planes are 
independent  „  ...  the  particle  motion  in  x  &  z  is   uncoupled“   

 
s = s1s = 0

0* xKx

Ansatz: )s i n h ()c o s h ()( 21 sasasx

Remember from school:

,)c o s h ()( ssf )s i n h ()( ssf

What about the case of K < 0? This has equation of motion

And corresponds to a diverging solution. We remember our studies of a mass on 
a spring and use the sinh/cosh functions.

Which means the general solution to the equation of motion is

This corresponds to a defocusing lens, and we 
can write the matrix as before.



Focusing and defocusing quadrupoles

For a given quadrupole magnet, we have one sign of the constant k in one plane  and the 
opposite sign in the other plane.

As expected the quadrupole focuses in one plane and defocuses in another  (as the 
magnetic field is curl free).

We call a horizontally-focusing quadrupole a “focusing quadrupole” 

A quadrupole with dBz/dx > 0 gives 

k > 0, and so is focusing.
 
Similarly dBz/dx < 0 gives k < 0,

and so is defocusing.



Drift spaces

x

x’

A drift space is a region of the beam line with no electromagnetic fields. We can 
figure out the evolution equations for x and x’ by either simple geometry or taking 
a limit of the quadrupole matrices where K->0. Either way we find 

Which we can write as a matrix very easily

L



The thin lens approximation

We know the matrix of a quadrupole can be written as

Very often the magnet is short compared to its focal length

This means we can take the limit of a very short magnet, whilst keeping 
the focal length constant:

This give us the thin lens matrices, which are very useful for quick 
calculations of a given accelerator structure 
(recall K > 0 for a horizontally focusing quadrupole, so f > 0)



Recap of linear transport matrices

An aside: What are the determinants 
of these matrices? What does that 
imply?



A pure dipole

To get the matrix for a dipole, we start from the matrix of a quadrupole

In the horizontal plane, a dipole gives a pure bending contribution to K

And so for a pure bend of length l we obtain

We can see the expected geometric focusing in the plane of the bend

NB The matrix in the vertical plane is a drift



Combining transfer matrices

In a real accelerator we have lots of 
elements in series.

Each element is represented by a 
matrix.

We multiply together the matrix for 
each element to give an overall 
transfer matrix through the system

First element!



The doublet

Consider a doublet made from a focussing and a defocussing quadrupole: 

If we multiply the thin lens matrices, the focal length for the combined system 
is easily obtained from the (2,1) element of the composite matrix

Focal lengths f1 f2

Separation d

If we let f1 = - f2 then the leading terms cancel and the doublet is focusing in 

both planes at the same time: I.e. f=(f
1
)2/d for x and z. This is exactly the 

behaviour we want in our accelerator!

This concept led to the invention of the alternating gradient (or strong 
focusing) principle and is the basic building block of most modern accelerator 
lattices.

d



Maps 

   A  map  relates an initial state vector to a final state vector

For the linear case, the map can be represented as a matrix.

For non-linear systems we cannot use a matrix to represent the map.

Non-linear representations include Taylor maps or Lie maps. 

See more advanced courses for details...



The one-turn map

We know how to combine maps

One particularly useful map is the one-turn map

If we start at location s in a ring of circumference C, then the one turn map is 
defined as one turn around the ring

This means the map for N revolutions of the ring is found from N applications to 
a given particle state vector of the one turn map 



A single particle for a single turn

It is simple to implement these maps in a computer simulation.



Tracking particles for many turns

Question: what will happen, if the particle performs a second turn ? 

x

... or a third one or ... 1010turns

0

s
Looking at lots of particles over many turns we see 
they trajectories form an envelope for the beam.

Note we can see the straight reference particle 
(yellow) in the above plot, which is not a real 
particle.



Back to Hill’s equation

Hill’s equation is a second order differential equation for a system with 
periodic focusing properties

It’s like a pendulum or mass on a spring but the restoring force is not 
constant. It’s a periodically-varying force (often seen in planetary 
dynamics).

If the closed orbit has periodicity L, then so does the function K(s)

So we can expect a kind of quasi-harmonic oscillation, where the frequency 
and amplitude depend on the location in the ring and show periodicity 
similar to that of the function K(s)…



The Courant-Snyder formalism

In the Courant-Snyder formalism we assume a solution of Hill’s equation inspired 
by our intuition of a position-dependent amplitude and phase. It is this….

- β(s) determines the amplitude and depends on the position around the 
accelerator. It’s not the relativistic β

- Ψ(s) is a position-dependent phase
- ε is a constant. Because Hill’s equation is linear, the constant does not 

appear in it. We’ll see later why ε is called the emittance.

β(s) is the key quantity in the Courant-Synder formalism and has many 
names : the beta function, the beam envelope function, the Courant-Synder 
beta function, the amplitude function and so on. It is always positive.

We’ll see that



If we take the derivatives of the Courant-Synder solution and substitute them 
back into the equation of motion, we find we get two terms, one proportional 
to cosine and one proportional to sine. This is a good exercise to do!

The coefficients of these terms must vanish separately. We obtain two 
differential equations:

A differential equation for the beta function 

The second equation equation can be integrated immediately:

and we are free to choose the integration constant to be unity
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The Courant-Synder (or lattice) functions

We then immediately have the result for the phase function

So this position-dependent phase is given by an integral of the beta function 
along the beam line. i.e. knowing the beta function means we can compute the 
phase function.

We can now eliminate the phase function from the first of the differential 
equations to get a differential equation for the beta function

So knowing the distribution of focusing strengths along a beam line 
determines beta.
Finally, we define two additional functions (lattice functions)



Applying the initial conditions

Once the beta function is known, and hence α and γ, the motion of a single particle 
is completely determined by specifying the emittance and the initial phase factor of 
the particle. So we have

We can combine these two equations to give the quantity

Which means we can write an expression which is invariant for a particle

Or, expanding the square, we arrive at the famous result

c.f. x
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Let’s look at this equation carefully. 

For every point in the accelerator we have a value of the functions α, β and γ. They 
depend on the lattice. 

At any point, if we combine the particle position and angle with these lattice functions 
we get an invariant, which was the emittance we saw in the solution to Hill’s equations 
in the Courant-Synder formalism.

As the particle moves to the next location in the accelerator, where we have different 
lattice functions, it get a different position and angle. However if we form this function 
again at the new location we get the same value as before.

In other words, the emittance is a constant of the particle’s motion.

The emittance is an invariant



The phase-space ellipse

This function describes an inclined ellipse 
in the (x,x’) plane, with the size and 
orientation of the ellipse described by the 
values of α, β and γ.

β controls the extent along the x axis, γ 
controls the extent along the x’ axis, α 
determines the ellipse orientation

 (example – what values of α, β and γ give 
you a perfect circle?)

The area of the ellipse is given by 

Which means the area of an ellipse 
transcribed by a given particle is constant.



A stroboscopic plot of a particle turn after turn after turn

Recall that the lattice parameters are functions of the focusing of the lattice, so every point in 
the lattice has a value of the lattice functions and so every point in the lattice has its own 
orientation and eccentricity of the ellipse. 

A given particle has its own value of the emittance which fixes the area of the ellipse it moves 
around. 

Consider sitting at a fixed point in the ring and watching a single particle turn after turn after 
turn. 

(x1, x1’) (x2, x2’) (x3, x3’) (x4, x4’) 

All these points lie on the ellipse.

Note the particle jumps around the
ellipse and does not move around
it continuously



Moving along a beam line

x

x’

x

x’

x

x’
s3

s1

s2

( β1, α1, ϒ1)

( β2, α2, ϒ2)

( β3, α3, ϒ3)

As we move along the beam line the 
ellipse inclination and eccentricity 
change, but the particle always lies on 
the ellipse.

...and the 
same in y,y’ 
of course.
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