1272-pa1-wp3-prs-0006-v0.1-twelve-month-review

Science and Technology Facilities Council

ITRF WP3 Conventional Technologies

Mark Johnson, Karen Kirkby and Hywel Owen

ITRF 12-Month Review

20/09/2023

Mark Johnson | Accelerator Physicist (ASTeC) Office A50 | STFC Daresbury Laboratory | Warrington WA4 4AD mark.johnson@stfc.ac.uk

Introduction

ITRF WP3 Context

- ITRF WP3 aims to compare options based on conventional technologies against the baseline LhARA facility design
- This includes the evaluation of a **synchrotron**, with an **injector** based on **established ion sources** and pre-acceleration methods
- Currently parameterising a small synchrotron design, adapted from work published by the **CERN NIMMS** project

At present, we are **not considering** the synchrotron as a **drop-in replacement** for the LhARA **FFA**

Design Basis

A Compact, Room Temperature Synchrotron

Key Requirements:

- Synchrotron is primarily designed for the **most likely radiotherapy ions** (H⁺, ⁴He²⁺ and ¹²C⁶⁺), without excluding heavier ions in future
- Aim for stored intensities compatible with FLASH regimes, of order 10¹⁰ ions per spill
- Machine fits within the circumference of the LhARA FFA (21.86 m) with similar beam energies
- Use accessible, conventional technologies e.g. **room temperature** magnets

Examples

CERN NIMMS and ELENA

Above: ELENA decelerator at the CERN AD **Below:** Render of the NIMMS ⁴He²⁺ synchrotron design

[1] H.X.Q. Norman *et al.*, Proc. IPAC '22, **THPOMS028** (2022)
[2] M. Vretenar *et al.*, J. Phys.: Conf. Ser. **2420** 012103 (2023)
[3] V. Chohan et al., Extra Low Energy Antiproton Ring (ELENA) and its Transfer Lines - Design Report, **CERN-2014-002** (2014)

• NIMMS have proposed **compact synchrotron** designs for ¹²C⁶⁺ and ⁴He²⁺ ions^[1,2]

- Designs target FLASH dose rates, at relatively high energies (430 MeV/u for ¹²C⁶⁺) relevant to clinical treatment
- NIMMS designs build on CERN experience with small hadron synchrotrons like **ELENA**^[3]
- **Slow-cycling** synchrotron designs (~1 Hz)

Mark Johnson | ITRF WP3 Synchrotron | 20/09/2023

ITRF Synchrotron Design

Overview

Small (~23.88 m circumference) synchrotron based on a **scaled** version of the **NIMMS ⁴He²⁺ synchrotron** design^[1]

- Ring comprised of three achromat lattice cells^[2]
- Room temperature 1.50 T sector dipoles allow
 ¹²C⁶⁺ acceleration up to 83.5 MeV/u
- **Dispersion-free straights** accommodate **injection**, **extraction** and RF hardware

Parameter	V	alue	
Dipole radius [m]	1.80		
Max. Dipole Field [T]	1.50		
Max. Beam Rigidity [T·m]	2	2.70	
Ion Species	H+	⁴ He ²⁺ , ¹² C ⁶⁺	
Max. Beam Energy [MeV/u]	105.5 ⁺	83.5	
Orbital Frequency [MHz]	5.50	4.97	

QF2 QF1 QF1 1000 MSE RF QF1 QF QF2 QF2 SX1 QF1 ESE QF1 (750 mm)

7.79 m

†Limited by assumed RF cavity bandwidth (1.5 - 5.5 MHz) Dipoles can accommodate protons up to 155 MeV

[1] M. Vretenar *et al.*, J. Phys.: Conf. Ser. **2420** 012103 (2023)
 [2] X. Zhang, arXiv:2007.11787 [physics.acc-ph] (2020)

ITRF Synchrotron Design

Choice of Beam Energy

KK /

Science and Technology Facilities Council

Making the synchrotron slightly larger than the LhARA FFA* facilitates **higher** ¹²C⁶⁺ extraction energies

- Synchrotron: 83.5 MeV/u
- LhARA FFA: 33.4 MeV/u

Higher-energy synchrotron has now been adopted as the **baseline WP3** machine design

Extraction energy chosen to provide a maximum **irradiation depth** of ~20 mm

* Original pre-CDR FFA design, circumference ~21.9 m

* FFA design presented to WP1.6 meeting 01/08/2023

Machine Footprints

Approximately to Scale

Approx. 8.5 m

[1] R. Taylor et al., J. Phys.: Conf. Ser 2420 012101 (2023)

КК К

Page 10

Mark Johnson | ITRF WP3 Synchrotron | 20/09/2023

ITRF Synchrotron Design

Beam Optics

The synchrotron design was optimised to **maximise** the accessible range of **working points**

Optics are tuned near a **third-order resonance** ($Q_x = 2.66$) for compatibility with slow, **resonant beam extraction**^[1]

Parameter	Value		
Optics Functions			
Max. β _x [m]	8.01		
Max. β _y [m]	13.4		
Max. D _x [m]	1.55		
Working Point			
Tune Q _x , Q _y	2.66, 0.60		
Chromaticity $Q'_{x'} Q'_{y}$	-3.82, -3.62		

Beam Injection

Injector Chain

NIMMS propose^[1] a **conventional injector** chain based on **CERN Linac 4**

- Multiple **ECR sources** are envisioned, based on the SEEIST^[2] injector and commercial *Supernanogan* source
- RFQ followed by one (two) DTL tanks to inject ions (protons) at 5 MeV/u (10 MeV)

Injection energies are primarily influenced by [3]

- Multi turn injection dynamics
- Space charge tune shift
- Stripping foil efficiency

Above: Commercial *Supernanogan* ECR source generating up to 2 mA H⁺ or 200 μA C⁴⁺

Left: Schematic layout of NIMMS He synchrotron and injector

[1] U. Amaldi et al., A Facility for Tumour Therapy and Biomedical Research in South-Eastern Europe, Vol. 2 (2019)

	-1.5	-1.0 -0.5	0.0 0.5	1.
			$x_{\rm N}/\sqrt{\varepsilon}$	
Parameter	Values			
	H+	⁴ He ²⁺	¹² C ⁶⁺	
Linac Current [mA]	2.0	1.0	0.2	
Injection Energy [MeV/u]	10	5	5	
Orbital Period [MHz]	1.82	1.29	1.29	
lons after 15 Turns [10 ¹⁰]	6.19	2.18	0.15	
Max. Space Charge Tune Shift	-0.18	-0.02	< 0.01	

Beam Injection

Multi-Turn Injection

lons are accumulated over several turns via **MT injection** or "phase space painting".

Injection is typically **limited** to **15 - 20 turns**, with ~60% efficiency

Estimate the maximum stored intensity based on the **SEEIST** injector parameters ^[1] and *Supernanogan* ECR source.

Mark Johnson | ITRF WP3 Synchrotron | 20/09/2023

Beam Extraction

Particle Tracking Simulations

Like NIMMS^[1], we expect to use **slow resonant extraction** using **RF knockout** at the third-order resonance

Extensive extraction simulations have been carried out for the CERN PIMMS designs (e.g. CNAO, MedAustron)^[2]

Typical **extraction timescale** of ~100 ms to 1 s

Figure: Normalised beam phase space (a) after excitation of the resonance, and (b) with "extracted" ions at the magnetic septum

Extraction scheme for the WP3 synchrotron is being **validated** using **MAD-X** particle tracking:

- Locations of extraction hardware
- Preliminary specifications for septa

Dose Rates

Preliminary Estimates

Indicative dose rates were calculated^[1] for a **9 cm³ irradiation volume**:

- 3 x 3 cm field size
- Depth from 0 1 cm

We assume a **uniform** irradiation using a **Spread-Out Bragg Peak** (SOBP) approach, and neglect lateral scattering.

Dose rate estimated from the energy deposited during a typical **100 ms slow extraction**.

Deve ve et e v	Value		
Parameter	H+	⁴ He ²⁺	12C6+
lons per Spill [10 ¹⁰]	5.0	2.0	0.15
Median Energy [MeV/u]	23.1	23.1	42.2
Dose per Spill [Gy]	20.5	32.8	13.5
Instantaneous Dose Rate [Gy/s]	205	328	135
Average Dose Rate [Gy/s]	20.5	32.8	13.5

Equivalent LhARA Calculation

- 10⁹ protons per pulse
 7 ns bunches at 10 Hz
- Instantaneous : 6 x 10⁷ Gy/s Average: 4.1 Gy/s

Slides from Karen Kirkby

Introduction

End Stations

Research Room at The Christie, Manchester

Prof. Ranald Mackay

Dr Helena Kondryn

The Christie Charity

The University of Manchester

End Stations

Research Room at The Christie, Manchester

Research Room End Station

- **O**₂: 0.1% ambient
- **CO₂**: 0% 20%
- **Temperature:** Ambient +4 °C 45 °C
- Humidity: Ambient 100 %
- Scanning Area: 20 x 20 cm
- 6-Axis Robot: 30s between samples
- Hotel: 36 samples (54/night)
- Automated liquid handling for 96-well plates
- Scattered dose to hotel at worst 1.27 mGy/Gy

New End Station

Working with Don Whitley Scientific

- Now fully funded
- Second Hotel of Samples Increased throughput
- **Cooled stage** DNA repair FLASH studies
- Online microscopy
- Utilises same robot
- And much more...

The Christie

Charity

MANCHESTER

The University of Manchester

1824

Conclusions

- A baseline synchrotron option for ITRF WP3 has been established, based on designs proposed by CERN NIMMS
- The synchrotron achieves a higher ¹²C⁶⁺ extraction energy than the LhARA FFA (83.5 MeV/u)
- MAD-X particle tracking simulations are being developed to explore and refine the scheme for slow extraction
- Instantaneous dose rates expected to be of order ~100 Gy/s

Bonus Slides

Mark Johnson | Accelerator Physicist (ASTeC) Office A50 | STFC Daresbury Laboratory | Warrington WA4 4AD mark.johnson@stfc.ac.uk

Christie Research Room

Video

The Christie 🔘 MANCHESTER 1824

Charity

The University of Manchester

Gran

https://www.youtube.com/watch?v=j2QR4PQvael