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LION Beamline
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Figure 1: Rendered CAD model of the LION beamline [1].



Simulation Pipeline
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Figure 2: Simulation pipeline.
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Energy Distribution Angular Distribution - flat

Figure 3: Simulated energy distribution [2]. Figure 4: Simulated angular distribution.
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LION beamline - BDSIM
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Figure 5: Side-on view of LION beamline in BDSIM.
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Particle Depth
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Figure 6: Particle depletion through the vacuum (left) and air (right) section of the simulated beamline.



Exit Window
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Figure 7: Energy spectrum at the exit window. Figure 8: Spot size at the exit window.

FWHMx ~ 0.67 mm
FWHMy ~ 0.37 mm
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Figure 9: Geant4 simulation of the SmartPhantom (left) and binned energy depositions along 
the three axis (0.1 mm voxels).
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Pressure Distribution & Acoustic Sensor
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sensor arrayproton beam 
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Figure 10: Source pressure distribution (left) and sensor location and geometry with respect to 
the beam depositions (right).
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Iterative Time-Reversal
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Figure 11: Reconstructed pressure distribution using an iterative time reversal algorithm.



SciFi Planes



Scintillating Fibre Planes
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Figure 12: Scintillating fibre planes: off-axis 
view (left) top-down view (right).
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Scintillating Fibre Planes
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Figure 13: Scintillating fibre plane stations (green) in the Geant4 
simulation geometry, Off-axis view (left), side-on view (right). 

4x fibre plane stations

Figure 14: 2D energy distribution 
reconstruction at each SciFi station.
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Depth-Dose Reconstruction

Figure 15: Histogram of the energy deposited by the proton 
beam in the water phantom as a function of position (taken 

from Anthea’s & Vania’s thesis).

Bortfeld approximation:



3D Reconstruction with SciFi Planes
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Figure 16: Reconstructed pressure distribution using an iterative time reversal algorithm , with 4 
stations of scintillating fibre planes.



Scintillating Fibre Planes: Beam Divergence
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Figure 17: Scintillating fibre plane stations (green) in the Geant4 simulation 
geometry. Off-axis view (left), side-on view (right). 

Average beam divergence = 0.055 radians 

Figure 18: 2D energy distribution 
reconstruction at each SciFi station.
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Scintillating Fibre Planes: Construction

Figure 19: Fibre plane CAD design.
Figure 20: Fibre plane manufacturing (taken 

from Anthea’s & Vania’s thesis).
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Liquid Scintillator
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Ultima Gold XR

Liquid scintillator : Water 
50 : 50

Figure 21: Chemical composition of the liquid scintillator. Figure 22: Liquid scintillator set up (taken 
from Peter Hobson’s slides).
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Fluorescent Dye Testing

Figure 23: Fluorescent dye experimental set up: angled view 
(left), cross-section view (right). Figure 25: Pixel intensity histogram.

Figure 24: Captured image in grayscale.
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Acoustic Transducer



Verasonics Matrix Array
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Figure 26: Matrix array shape (left), element configuration (middle) and detailed specifications (right) [3].



Phantom Design



29

Requirements
1. Elongated entrance window

2. Fill with/remove deionised water: entry tube

3. Ability to insert & remove SciFi detectors

4. Aluminium structure: no interaction with liquid scintillator

5. Black Kapton foil  

6. Black interior: anodising

7. Two cameras placed perpendicular to each other

8. Matrix array placed at two (perpendicular) locations

9. Black Kapton foil & acoustic matching gel for matrix array

10. One fixed single element transducer (Olympus V311-SU [4]): reference
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Current Design

Figure 27: SmartPhantom
design looked at different 
angles.
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Current Design

Figure 28: SmartPhantom
cross-sections.



Next Steps



Next Steps
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1. SciFi detector construction & quality assurance tests

2. Liquid scintillator

3. Reconstruction with matrix array

4. SmartPhantom manufacturing

5. Transducer mount & testing

6. SmartPhantom at a proton beam

7. SmartPhantom at the LION beamline

Proton beam testing
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