

in partnership with The ROYAL MARSDEN NHS Foundation Trust

WP4: Ion-acoustic dose mapping

Maria Maxouti, Josie McGarrigle, Anthea MacIntosh-LaRocque, Vania Lay, Yu Hu, Ben Cox, Ben Smart, Colin Whyte, Kenneth Long, Emma Harris, Jeff Bamber

Imperial College London

Science and Technology Facilities Council

2-year Objectives, Tasks, Milestones

Objectives:

- The development of a Geant4 MC simulation of the forward model
- The development of a k-wave acoustic forward model

Tasks:

- The detailed <u>design of a proof of principle experiment</u> to be executed during the Preconstruction Phase of the project, identifying potential suppliers for components.
- Reports on progress towards above objectives.

Milestones:

- 18-month report: forward simulation of energy deposited in a water phantom (SmartPhantom) and deposited energy resolved in 4D.
- 24-month report: results of forward simulation and its use to optimise SmartPhantom performance to provide the power density spectrum as input to the acoustic model.

4

Agenda

1. Jeff - Introduction, aims and objectives

- → 2. Maria Python → BDSIM → Geant4 → k-Wave simulation and plans for future validation experiment at LMU
 - 3. Jeff Photoacoustic simulation experiment (work of MRes student, Yu Hu)
 - 4. Jeff Summing up of status

Preliminary photoacoustic "experimental simulation" – Yu Hu (MRes project)

Geant4 – 20000 protons, 40 ns, 70 MeV

z (mm)

6

R The Institute of Cancer Research

Further processing of deposited energy distribution

ICR The Institute of Cancer Research Mould designs for beam insert and background impression, from surface of revolution from radius-depth plots

Two halves of beam insert

Mould to create a hollow impression in the background

The Institute of

3D printed mould examples (5%)

Two halves of beam insert

Half the beam hollow impression in half the cylindrical background

The Institute of

Cancer Research

Half phantom example (40%)

Background (TiO² in _____ gelatine)

Beam insert at 40% threshold (India ink pigmented)

Photoacoustic imaging system

Example photoacoustic images (5%)

The Institute of Cancer Research 12

Acoustic signals received at sensor element 128

CR The Institute of Cancer Research 13

Acoustic signals received at sensor element 128

14 Cancer Research

The Institute of

Simulated acoustic signals received at sensor element 128

R The Institute of 15

Analytical (and experimentally confirmed) predictions of pressure-time waveforms

R The Institute of Cancer Research 16

ask Name	Work Package	Start	Finish	2022 2022
				2022 Half 1, 2023 Half 2, 2023 Half 1, 2024 Half 2, 2024 O N D J F M A N J A S O N D J F M A S O N D J F M A S O N
WP4 Ion-acoustic	WP4	Sat 01/10/22	Thu 30/09/27	
PA1 yrs 1&2	WP4	Sat 01/10/22	Mon 29/09/25	
1. Review - Current state of the art: ionacoustics / modelling of ionacoustics / proton dosimetry	WP4	Sat 01/10/22	Fri 30/12/22	
2. Development of GEANT 4 Monte Carlo part of the forward model	WP4	Sat 01/10/22	Mon 29/09/25	
2.1.Simulation of current beam line and smart phantom	WP4	Sat 01/10/22	Sat 01/04/23	
2.2.Updated simulation of LhARA and smart phantom, as the specifications are developed in WPs 2,3,5 and 6.	WP4	Sun 01/10/23	Sun 29/09/24	
3. Development of k-Wave forward acoustic model	WP4	Sun 01/01/23	Fri 27/12/24	
3.1.Simulation of ionacoustic source, propagation and sensing, and design of array configuration for validation experiments	WP4	Sun 01/01/23	Thu 28/09/23	
3.2.Updated simulation of ionacoustic source, and development of sensor array specification as Lhara specifications are developed	WP4	Sun 01/10/23	Fri 27/12/24	
4. Implementation, simulation evaluation and development of inverse dose-map reconstruction software	WP4	Sat 01/04/23	Wed 02/07/25	
4.1. Direct ionacoustic reconstruction with handling of sensor array	WP4	Sat 01/04/23	Thu 28/12/23	
4.2. Iterative reconstruction methods with model-based priors from	WP4	Tue 02/04/24	Tue 02/07/24	
4.3. Iterative reconstruction methods with angular dependence of frequency content from 2 and 3	WP4	Wed 02/10/24	Mon 30/12/24	
4.4. Implementation of various dose-map reconstruction programs of	WP4	Wed 03/04/24	Wed 02/07/25	

Т