

Novel FFA lattice candidate for LhARA

J. Pasternak

20/09/2023, LhARA CM, Glasgow

Outline

- Introduction
- LhARA FFA baseline
- LhARA double spiral FFA candidate
- Magnet R&D
- Conclusions

LhARA, introduction

- LhARA will use laser ion source based on sheath acceleration
- Gabor plasma lenses will be used to capture and focus the beam in the front-end
 - NC solenoids could be used instead
- Variable energy FFA will be used as post-accelerator
- Fully instrumented end-stations will allow for precise radiobiological experiments

Energy Variability using Laser Accelerated Ions

LhARA Ring Tracking

- Performed using proven stepwise tracking code
- It takes into account fringe fields and non-linear field components
- Results show dynamical acceptances are large
- No space charge effects included yet
- Tracking performed using FixField code

FFA Ring with subsystems

Parameter	unit	value
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees	48.7
thickness	cm	1
full gap	cm	3
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	1.12
magnetic length	m	0.9
deflection angle	degrees	34.38
thickness	cm	1
full gap	cm	2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	ns	320
flat top duration	ns	25
full gap	cm	3
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	Т	0.05
deflection angle	mrad	19.3
rise time	ns	110
flat top duration	ns	40
full gap	cm	2

•

J. Pasternak, IC London

s[m]

DA studies in double spiral candidate (Ff, nominal tunes)

Tracking studies show sufficient DAs in both transverse planes

B field in double spiral candidate (Ff, nominal tunes)

Ff vs Fd configurations (nominal tunes vs "high intensity" tunes)

Optics an DA studies in double spiral candidate (Fd, "high intensity" tunes)

- "High intensity" tunes: (Q_H, Q_V)=(2.22,2.19) provide similar betatron functions
- This working point is limited to low energy
- DAs are larger than in the nominal working point
- We could perform space charge experiments
 - Beam is space charge dominated at injection due to the short bunch length from the laser source

Essential R&D

Magnet types to be considered

- For LhARA magnet with parallel gap with distributed windings would be of choice with gap controlled by the clamp. Concepts like an active clamp could be of interest too.
- Another important aspect of the R&D is the technology transfer for Magnetic Alloy (MA) loaded RF cavities for the ring. Those type of cavities are in routine, operation for example at J-PARC, Kyoto University (KURNS) and at CERN
 - Prototype for FETS-FFA in development

J. Pasternak, IC London

Magnet with distributed conductors:

- Parallel gap vertical tune more stable,
- Flexible field and k adjustment,
- Constructed for IonBeta machine at Kyoto University (KURNS)
- Prototype is in development for FETS-FFA, see Ta-Jen Kuo's talk
 - This will inform LhARA design

"Gap shaping" magnet:

- •Developed by SIGMAPHI for RACCAM project
- Initialy thought as more difficult
- •Behaves very well

•Chosen for the RACCAM prototype construction

Conclusions

- LhARA at Stage 2 can use FFA-type ring as a post-accelerator enabling variable energy beams of various types of ions.
- The cost effective, single spiral scaling FFA chosen for the baseline shows a good performance in tracking studies
- Feasible ring injection, extraction and beam transport to the end stations at Stage 2 have been designed
- Alternative double spiral scaling lattice was proposed
 - Allows for the independent tuning of both tunes over a wide range
 - Allows to work with a nominal tune (2.83, 1.22) in the Ff configuration
 - Allows to obtain working point with both tunes close to each other (2.22,2.19) at low injection energy (3 MeV) in Fd configuration
 - May be suitable for space charge experiments
- Essential R&D items:
 - finalisation of the lattice design
 - the main FFA magnet
 - in collaboration with ISIS
 - the RF system for the ring
 - in collaboration with ISIS