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Oh et al. https://doi.org/10.3390/app112411896
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Incident Photon

il One Option for CLS-Grid
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Scattered Photon

Photocathode

Electron Beam Injector
IIIumlnator

J Electron Storage Ring * CLS - commercially available since 2015 (Munich CLS)

Coupling —
error\ » Recent developments extending the envelope of
3 performance
///// Monochromatic » Hardware cost ~£10-15M for the source
/! l
| . . C_o imated * In the hard X-ray range (30-90keV or 60-180keV)
nteraction Region : X-ra " K
/< ~— competitive with synchrotron light
Mode-locked IR Laser matched to _ \
ring cycle frequency (~ 65 MHz) IR Reflecting
X-ray Transparent Mirror
Electron Laser Energy X Energy . Rep. Rate
ICS Energy (MeV) Alas (um) (m)) (keV) X Flux Bandwidth (Hz)
CLS [8] 2545 1 5 842 5.10%-5-10° 3% 65-10°
MUCLS [9] 25-45 1 5 842 5:10%°-5:10° 3-5% 65-100
ThomX [28] 50 1.03 14261073 45 10° 10% 65-10°

Petrillo et al., https://doi.org/10.3390/app 13020752
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Deitrick et al., https://doi.org/10.1103/PhysRevAccelBeams.24.050701
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Jll 3" and 4th Generation Synchrotrons

Synchrotrons .

ICS vs. other sources
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Main Linac Cryomodule

Aim: examine whethera CBETA ERL might be a 20
competitivereplacementforthe Cornell CHESS
synchrotronlightsource
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il Compact light sources: what might a node look like? k‘_ﬁ

28.00m

12.00

-

T

A

wd

Operator-| Operator % ‘
TN S Isolated S
r\il. concrete slab _
‘ CLS Focusing Optics ‘ %
X-ray ocal poin T i
beamline 3 ] —
Endstation Endstation ~Endstation | z i

3 2 1 T i —

. 3 2.00m. R o S e fet S Pl 8
IIn—wyo Endstation Endstdtion % . E
maging e

2a 1a ©
Medicines Battery o
formulator test-facility §/:: [_cable porf T 1
Zj - + Rack Rack E
. 5
I |Work ben?:“l Work | : . Chillerarea
Electron : : :
Battery : Materialsfor Net Zero In-vivo/Ex-vivo
. microscopy/ ) ) s : s
assembly suite engineering test facility bio-facility
spectroscopy
.. Medicines formulation
Training centre

small-scale production plant

Construction will use
STFCs life cycle analysis of
sustainable construction,
operationand
decommissioning

(Design based on existing facilities)

Business offices
on second storey



il UKRI, STFC, ASTeC and Infrastructures

e STFC Strategic Framework:
e ‘giving priority to infrastructures that support the
science mission needs’
* ‘ensure that critical technologies are developed for
future infrastructures’
* ‘provision and operation of research facilities in...
...any area of UKRI’s activity’

e  UKRI Infrastructure Fund:

* ‘aimed at supporting significant investments that
enable a step change in research and innovation
infrastructure’

* New build, upgrades, or decommissioning

*  Full Project or Preliminary Activity

Stage 1l Stage 2 Stage 3a Stage 3b
(needs) (options) (Preliminary) (Full)
\ J
Y

Infrastructure Fund eligibility
Hywel Owen | CLS Grid Project | 06/10/2023

C

Over 500 nationally and
internationally significant
infrastructures

o,
A breadth of expertise: 92 /O
work across more than one
topic domain

Three quarters

work with UK business and

o, With public policy
42 /0 organisations

Biological sciences, Ener
health and food - y

Physical sciences - Environment
and engineering

Infrastructures employ just

under 25'000 staff

Social sciences, arts Computational
and humanities and e-infrastructure

UKRI Infrastructure Projects:

32 Full Projects

9 Preliminary Activities — ASTeC pivotal in 1/3 of PAs
Total investment 481M 2022-2025

Includes projects such as DIAMOND-II, SKAO, Hyper-K

Accelerator Science and Technology Centre (100 staff)
Science and Technology Facilities Council (1900 staff)

‘Coordinates research and development of national
infrastructures’
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] Gammas @ UK-XFEL

Aim: examine whetherthereis a case forand design of a
1-100 MeV gamma source forthe UK-XFEL project

Main points:

Currentsources generally based on bremsstrahlung -

signal to noise limitand dose limit
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“Perspectives for photofission studies with highly brilliant,
monochromatic y-ray beams” P. G. Thirolf et. al., EP) Web of
Conferences 38, 08001 (2012)
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Intensity (arb. units)

Brem spectra compared to example dipole
resonances of 1-129 and Cs-135/137
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REHMAN ET AL.
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. Gammas also generated by active sources, such as Co-60, these are
monoenergetic, but have fixed energy, isotropic emission and low flux

Page 10



Jll A Gamma Source at UK-XFEL?

Spectral Density [ph/(MeV nC)]

Spectral Density [ph/(MeV nC)]

What gamma properties can such a source provide? Central energy of gammasis proportional to square of electron beam energy,

linearly proportional to laser photon energy. E.g. vary electron beam energy from ~500 MeV to 2 GeV — and have perhaps two laser

cavities of 1064 /532 nm gives us variability from ~1 to ~100 MeV
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* Dialling the electron energy down to three

example energies of 360 MeV, 720 MeV and
1070 MeV results in gammas at 2.3 MeV, 9
MeV and 20 MeV

100 MHz 2 GeV
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ICS Gun
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100 MHz 2 GeV
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Techpolpgy
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Enax 1+X

Electron Kinetic Energy (MeV)

362 717 1072
y-ray peak energy 2.33 9.06 20.11 MeV

Baseline
Source size (x/y)  10.72/10.72  8.00/8.00 6.65/6.65 um
Uncollimated flux ~ 5.77x10"  6.02x10""  6.08x10'" ph/s
Spectral density 2.48x10° 6.65x10% 3.03x10* ph/s eV
Average brilliance  5.64x10'?  2.05x10"%  4.45x10"  ph/s mm®mrad” 0.1% bw
Peak brilliance” 4.44x10"%  1.62x10"  3.50x10'"  ph/s mm? mrad® 0.1% bw
0.5% rms bandwidth

Source Size (x/y) 19.36/12.54 19.35/12.52 19.33/12.50 (m
Collimated flux 1.30%10° 1.29%10" 1.29%10" ph/s 0.5% bw

RF Deflector

Delay Chicane
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100 eV - 5 keV Photons
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Pathway to UK-XFEL Gamma Source — CLARA Demonstrator gﬁ

‘ J | R A ‘ ‘ Parameter Quantity
P [ L Wavelength, 4, 800 nm
. Photon energy, £, 1.55eV
Collimator EY: Slaser
L — , . : _ Pulse energy, £jse 0.101]
iy et B | liir i | _ Number of photons per pulse, Njyeer 403 x 107
== i j— i ) i : - X - Repetition rate, [ | Hz
; . = . . - ! Rms spot size at the IP, o, 45 um
Direction of Direction +/ Detector Crossing angle, ¢ 0 rad
electron J J ' of gammas 1T Rms pulse length, T, 2.00 ps
beam ' r ' r ' T RPN A R Normalised Laser Vector Potential, ¢,  8.56 x 1072
) . : . Rms spectral B idth, AE ./ Ejae 031
To build community and gain experience a y-ray ICS source 1eb ms spectral Bandwidt taser Eraser 003185
o o =351
demonstration is proposed at CLARA, Daresbury—this will be ¢ o Parameter Quantity
> 3.U"H " " -
low flux as CLARA is 100 Hz, not ~¥100 MHz, but can be done £, | Electron kinetic energy, £, 250 Mev
=2 Repetition rate, f 1-100 Hz
soon ~2026 2201 Bunch charge (typical), eN, 100 pC
-1“;.. 15 Normalised rms emittance, ¢y I mm-mrad
Aim is to demonstrate production, detection and 8 0. rms bunch length, A7 0.73 mm (2.4 ps)
g Absolute energy spread, AE, 20 keV
characterisation of the spectrum of collimated y-rays against 5 05 Relative energy spread, AE,/E, 8.00 x 1073
. . : : . . . & Baseline par: s
semi-analytical spectrum simulations in the linear regime. 0.0 ] , i , , , , Foncii ” ﬁ:e - paramcters 153
1470 1472 1474 1476 1.478 1.480 1.482 B-tunction at the 1P, A 43 m
i . . T Scattered Photon Fnerav (MeV) Electron bunch size, T alectron 50 pm
Ti:Salaser (full and reduced power) is baseline, possibility of
o ) Parameter Value
Nd:YAG system additionally. Electron parameters are widely Collimation angle, 0, 0.070 mrad Top: Ti:Sa laser parameters at IP.
tuneable, delivering a variety of bunch configurations. Max gamma photon energy. Ejizx  1.481 MeV Bottom: Electron bunch parameters at IP.
Source bandwidth, AEy /E}, 3.17 %
Gammas collimated by a lead collimator post interaction of Flux at detector 1000 phv/s
Uncollimated flux 5.83 x 10° ph/s

mm scale aperture radius place 10m downstream and then
detected by a HPGe detector placed beyond that.
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-Exemplar: Life and Biomedical Sciences Centre

A medium-resolution CLS imaging facility for in-vivo and ex-vivo research, longitudinal studies, and %
correlative workflows

Science Challenges:

. ) ) L Ancillary Facilities:
* Understanding biological organisation Antivirals and

and coordination across length scales antimicrobials * Electron microscopy (EM)

« Understanding mechanisms of * including volume EM

disease, tissue injury, and repair

* In-situ/in-operando
* Developing new diagnostic X-ray experimental rigs

pathology techniques « Sample preparation and

* Multiscale correlative workflows maintenance/preservation

Adjacency with existing
biomedical infrastructure

Technical Challenges

* Flexible scheduling for integration

within correlative and longitudinal Regenerative - _
workflows medicine Healthy ageing

research hospitals

* correlative facilities
* Allowing repeat measurements of

biological replicates * biomedical research groups

Neuroscience * expertise in sample

* establishing direct connections with :
preparation

biomedical, life, and clinical scientists

Regional strengths: Crick, Purbright, Edinburgh/Glasgow, North West........



mm Exemplar: Advanced Medicines
Manufacturing Facility

Technical Challenge
e Endstationwith in situ drug manufacturing micro-factory
* Collecting massive datasets

Data-driven
advanced process technologies
At-line (local) — Fast turnaround — Automation

predi@ Micro- Materials- Products In situ/Operando — Process Equipment
Process Factory Processes
Design e 4D X-rayimaging — all length & time scales
Multiple contrast modalities: XRD, XPCI, XPDF, SAXS;
wolecu/g ﬂ — ptychography
ho¥ Development Pathways O
.| Integration ___for Performance Based y. .‘ * X-ray scattering— molecular structure; XRD - XPDF
, ~ Manufacture Perconalised noncrystalline phases - melts — solutions — composites
Products Supply
- » X-ray spectroscopies — speciation / surface analysis
Predictive i Ambient pressure Photoelectron (HAXPES) and absorption
Product. 4  Dieital Structure Models spectroscopies (NEXAFS)

Design,

PPN e ProcessData
Digital Design A“ CMAC
D /g

Process — Products — Control Systems eyttt
RESEARCH HUB
Strengths in Scotland, North West, South East...



lll Exemplar: Medicines made smarter campaign

« Making new medicines
more quickly requires
exploitation’of
digitalisation methods
combined with lots

orocess data

* Installation of in situ
orocessing facilities
could provide the Iaége
amount of data needed
to rapidly accelerate
mediciné design

« Empower digital design

Scotland, North West,
South East...

Including stability testing:
> 9,000,000 batches
® FExcluding stability testing:
> 500,000 batches



ll Exemplar: Engineering solutions centre

Challenges: responding quickly to
serious idnknown unknown events
& supporting the 10 point plan for
a green industrial revolution:

. Developin? new manufacturing
a

processes (additive .
manufacturing repair of blisks)
Midlands

* Nuclearfuel research and other
restricted materials Cumbria,
Culham, HSE-Buxton....

« Composites for aerospace and
windturbines, NE England, N
Ireland, N Wales...

 Catalysts working in extreme
environments, Wales, North East, tensin ciamp
North West...

Solutions: fastaccess, strong |
industry engagement, il
multiparametric process

development access, secure areas




Exemplar: Cultural heritage analysis hub

Challenges:

Fresh oak

Specialist technical expert
support and sample stewardship

Testing/developing eonservation
treatments

Digitising rare artefacts
Revealing inside information by
3D X-ray imaging

Chemical (diffraction,
spectroscopy, micro-fluorescence)
analysis of natural and man
made artefacts

1-Copper resinate
blackening

Link to RICHeS ......

Cultural and Natural Heritage
at the ESRF: Looking Back
and to the Future, 2019,

a Synchrotron Radiation

| 9- Calcium antimonate NeWS 32(6)34‘40
l glass opacifiors |




lll Exemplar: Understanding our environment

Fluid phase occupancies govern
chemical interactions with solids

Science challenges: Tracking the response of —

our environment to external factors for =

e agriculture/soil health,

* Critical materials mining/extraction

* sub-surface energy storage/exploitations
(O&G, CCS, Hy, geothermal, nuclear),

* seismicity, subsidence, landslides, volcanic P
risk, planetary evolution, remdiation

e If
- R

Technical Challenges: Extreme
pressures/temps, multi-visit experiments; long-
durations (months/years)

Solutions: special environmental rigs to be
wheeled into beamline periodically

Link to CO, Storage Testbed

Replicating conditionsat  Experiments on magma at 1200°C imaging
Strengths: Scotland, North West, South West 600km depth exsolved bubbles at sub-second intervals



Il Exemplar: Forensics hub

Challenge
 Certification and Data Management structure

* Advanced 3D Imaging and analysis capabilities to
support forensic research

* Align with the ‘Forensic Centre for Digital
Scanning and 3D Printing’: 200+ cases for 22 UK
Police forces

* High resolution reference scans for traceability -
Gold standard Digital Histology

* Characterisation of soft tissue injuries

Links with national bodies:

Forensic Science Regulator (FSR)

Crown Prosecution Service (CPS)
National Crime Agency (NCA)

National Injury Database
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