

The University of Manchester

1278-pm-prs-0005

CLS Grid Technical Considerations

Hywel Owen

27 Sept 2023

Hywel Owen | Accelerator Physics Group UKRI-STFC Daresbury Laboratory / Cockcroft Institute | United Kingdom Mywel.owen@stfc.ac.uk

3rd and 4th Generation Synchrotrons

Oh et al. https://doi.org/10.3390/app112411896

One Option for CLS-Grid

Science and Technology Facilities Council

- CLS commercially available since 2015 (Munich CLS)
- Recent developments extending the envelope of performance
- Hardware cost ~£10-15M for the source
- In the hard X-ray range (30-90keV or 60-180keV) competitive with synchrotron light

ICS	Electron Energy (MeV)	λ_{las} (µm)	Laser Energy (mJ)	X Energy (keV)	X Flux	Bandwidth	Rep. Rate (Hz)
CLS [8]	25-45	1	5	8-42	$5 \cdot 10^2 - 5 \cdot 10^3$	3%	65·10 ⁶
MUCLS [9]	25-45	1	5	8-42	$5 \cdot 10^2 - 5 \cdot 10^3$	3–5%	$65 \cdot 10^{6}$
ThomX [28]	50	1.03	$1.4 - 2.6 \cdot 10^{-3}$	45	10 ⁵	10%	$65 \cdot 10^{6}$

Petrillo et al., https://doi.org/10.3390/app13020752

One Option for CLS-Grid

Science and Technology Facilities Council

Deitrick et al., https://doi.org/10.1103/PhysRevAccelBeams.24.050701

Hywel Owen | CLS Grid Project | 06/10/2023

3rd and 4th Generation Synchrotrons

ICS @ CBETA

Aim: examine whether a CBETA ERL might be a competitive replacement for the Cornell CHESS synchrotron light source

doi:10.18429/JACoW-IPAC2019-TUPGW085 doi:10.18429/JACoW-IPAC2021-THPAB009 https://doi.org/10.1103/PhysRevAccelBeams.24.050701

Compact light sources: what might a node look like?

Construction will use STFCs life cycle analysis of sustainable construction, operation and decommissioning

(Design based on existing facilities)

Business offices on second storey

UKRI, STFC, ASTeC and Infrastructures

- STFC Strategic Framework:
 - 'giving priority to infrastructures that support the science mission needs'
 - 'ensure that critical technologies are developed for future infrastructures'
 - 'provision and operation of research facilities in... ...any area of UKRI's activity'
- UKRI Infrastructure Fund:
 - 'aimed at supporting significant investments that enable a step change in research and innovation infrastructure'
 - New build, upgrades, or decommissioning
 - Full Project or Preliminary Activity

Over **500** nationally and internationally significant infrastructures

A breadth of expertise: **92%** work across more than one topic domain

Three quarters

42% with public policy organisations

Infrastructures employ just under 25,000 staff

- UKRI Infrastructure Projects:
- 32 Full Projects
- 9 Preliminary Activities ASTeC pivotal in 1/3 of PAs
- Total investment 481M 2022-2025
- Includes projects such as DIAMOND-II, SKAO, Hyper-K
- Accelerator Science and Technology Centre (100 staff)
- Science and Technology Facilities Council (1900 staff)
- 'Coordinates research and development of national infrastructures'

Additional Material

Gammas @ UK-XFEL

Aim: examine whether there is a case for and design of a 1-100 MeV gamma source for the UK-XFEL project

Main points:

Current sources generally based on bremsstrahlung signal to noise limit and dose limit

"Perspectives for photofission studies with highly brilliant, monochromatic γ -ray beams" P. G. Thirolf et. al., EPJ Web of Conferences 38, 08001 (2012)

Brem spectra compared to example dipole resonances of I-129 and Cs-135/137

REHMAN ET AL.

1.5

4

Gamma-ray energy (MeV)

Gammas also generated by active sources, such as Co-60, these are ٠ monoenergetic, but have fixed energy, isotropic emission and low flux

A Gamma Source at UK-XFEL?

 What gamma properties can such a source provide? Central energy of gammas is proportional to square of electron beam energy, linearly proportional to laser photon energy. E.g. vary electron beam energy from ~500 MeV to 2 GeV – and have perhaps two laser cavities of 1064 / 532 nm gives us variability from ~1 to ~100 MeV

Facilitiés Council

Science and Technology

 $E_{\rm max}^{\gamma}$

Pathway to UK-XFEL Gamma Source – CLARA Demonstrator

- To build community and gain experience a γ-ray ICS source demonstration is proposed at CLARA, Daresbury—this will be low flux as CLARA is 100 Hz, not ~100 MHz, but can be done soon ~2026
- Aim is to demonstrate production, detection and characterisation of the spectrum of collimated γ-rays against semi-analytical spectrum simulations in the linear regime.
- Ti:Sa laser (full and reduced power) is baseline, possibility of Nd:YAG system additionally. Electron parameters are widely tuneable, delivering a variety of bunch configurations.
- Gammas collimated by a lead collimator post interaction of mm scale aperture radius place 10m downstream and then detected by a HPGe detector placed beyond that.

Parameter	Value
Collimation angle, θ_{col}	0.070 mrad
Max gamma photon energy, E_{max}^{γ}	1.481 MeV
Source bandwidth, $\Delta E_{\gamma}/E_{\gamma}$	3.17 %
Flux at detector	1000 ph/s
Uncollimated flux	5.83×10^5 ph/s

Parameter	Quantity	
Wavelength, λ_{laser}	800 nm	
Photon energy, E_{laser}	1.55 eV	
Pulse energy, E_{pulse}	0.10 J	
Number of photons per pulse, N_{laser}	4.03×10^{17}	
Repetition rate, f	1 Hz	
<i>Rms</i> spot size at the IP, σ_{laser}	45 µm	
Crossing angle, ϕ	0 rad	
<i>Rms</i> pulse length, τ_{laser}	2.00 ps	
Normalised Laser Vector Potential, a_0	8.56×10^{-3}	
<i>Rms</i> spectral Bandwidth, $\Delta E_{\text{laser}}/E_{\text{laser}}$	0.03185	

Parameter	Quantity				
Electron kinetic energy, E_e	250 MeV				
Repetition rate, f	1–100 Hz				
Bunch charge (typical), eN_e	100 pC				
Normalised <i>rms</i> emittance, ϵ_N	1 mm-mrad				
<i>rms</i> bunch length, $\Delta \tau$	0.73 mm (2.4 ps)				
Absolute energy spread, ΔE_e	20 keV				
Relative energy spread, $\Delta E_e/E_e$	8.00×10^{-5}				
Baseline parameters					
β -function at the IP, β^*	1.23 m				
Electron bunch size, σ_{electron}	50 µm				

Top: Ti:Sa laser parameters at IP. Bottom: Electron bunch parameters at IP.

Exemplar: Life and Biomedical Sciences Centre

A medium-resolution CLS imaging facility for in-vivo and ex-vivo research, longitudinal studies, and correlative workflows

Science Challenges:

- Understanding biological organisation and coordination across length scales
- Understanding mechanisms of disease, tissue injury, and repair
- Developing new diagnostic X-ray pathology techniques
- Multiscale correlative workflows

Technical Challenges

- Flexible scheduling for integration within correlative and longitudinal workflows
- Allowing repeat measurements of biological replicates
- establishing direct connections with biomedical, life, and clinical scientists

Ancillary Facilities:

- Electron microscopy (EM)
 - including volume EM
- In-situ/in-operando experimental rigs
- Sample preparation and maintenance/preservation

Adjacency with existing biomedical infrastructure

- research hospitals
- correlative facilities
- biomedical research groups
- expertise in sample preparation

Regional strengths: Crick, Purbright, Edinburgh/Glasgow, North West......

Exemplar: Advanced Medicines Manufacturing Facility

Technical Challenge

- Endstation with in situ drug manufacturing micro-factory
- Collecting massive datasets

Data-driven advanced process technologies

Process – Products – Control Systems

Strengths in Scotland, North West, South East...

At-line (local) – Fast turnaround – Automation In situ/Operando – Process Equipment

- <u>4D X-ray imaging</u> all length & time scales Multiple contrast modalities: XRD, XPCI, XPDF, SAXS; ptychography
- <u>X-ray scattering</u> molecular structure; XRD XPDF noncrystalline phases - melts – solutions – composites
- <u>X-ray spectroscopies</u> speciation / surface analysis Ambient pressure Photoelectron (HAXPES) and absorption spectroscopies (NEXAFS)

Exemplar: Medicines made smarter campaign

- Making new medicines more quickly requires exploitation of digitalisation methods combined with lots process data
- Installation of in situ processing facilities could provide the large amount of data needed to rapidly accelerate medicine design
- Empower digital design Scotland, North West, South East...

Exemplar: Engineering solutions centre

Region .

Challenges: responding quickly to serious unknown unknown events & supporting the 10 point plan for a green industrial revolution:

- Developing new manufacturing processes (additive manufacturing repair of blisks) Midlands
- Nuclear fuel research and other restricted materials Cumbria, Culham, HSE-Buxton....
- Composites for aerospace and wind turbines, NE England, N Ireland, N Wales...
- Catalysts working in extreme environments, Wales, North East, Tension clamp North West...

Solutions: fast access, strong industry engagement, multiparametric process development access, secure areas

Fresh oak

Exemplar: Cultural heritage analysis hub

Challenges:

- Specialist technical expert support and sample stewardship
- Testing/developing conservation treatments
- Digitising rare artefacts
- Revealing inside information by 3D X-ray imaging
- Chemical (diffraction, spectroscopy, micro-fluorescence) analysis of natural and man made artefacts
- Link to RICHeS

5 mm 2mm from surface 6mm from surface Cultural and Natural Heritage

Cultural and Natural Heritage at the ESRF: Looking Back and to the Future, 2019, Synchrotron Radiation News 32(6):34-40

Exemplar: Understanding our environment

Science challenges: Tracking the response of our environment to external factors for

- agriculture/soil health,
- Critical materials mining/extraction
- sub-surface energy storage/exploitations (O&G, CCS, H₂, geothermal, nuclear),
- seismicity, subsidence, landslides, volcanic risk, planetary evolution, remdiation

Technical Challenges: Extreme pressures/temps, multi-visit experiments; longdurations (months/years)

Solutions: special environmental rigs to be wheeled into beamline periodically

Link to CO₂ Storage Testbed

Strengths: Scotland, North West, South West

Fluid phase occupancies govern chemical interactions with solids

Replicating conditions at 600km depth

Experiments on magma at 1200°C imaging exsolved bubbles at sub-second intervals

Exemplar: Forensics hub

Challenge

- Certification and Data Management structure
- Advanced 3D Imaging and analysis capabilities to support forensic research
- Align with the 'Forensic Centre for Digital Scanning and 3D Printing': 200+ cases for 22 UK Police forces
- High resolution reference scans for traceability -Gold standard Digital Histology
- Characterisation of soft tissue injuries

Links with national bodies:

- Forensic Science Regulator (FSR)
- Crown Prosecution Service (CPS)
- National Crime Agency (NCA)
- National Injury Database

