Fundamental Physics with XFELs

Ralf Schützhold

Helmholtz-Zentrum Dresden-Rossendorf Institut für Theoretische Physik, Technische Universität Dresden

UK XFEL townhall meeting on Fundamental Physics, Quantum Computing and AI, University of Plymouth, 19th January 2024

Member of the Helmholtz Association

R. Schützhold | Theoretical Physics | http://www.hzdr.de

Dynamically Assisted Quantum Tunneling

S. Coleman: "Every child knows..."

$$P \sim \exp\left\{-\frac{2}{\hbar}\int dx\,\sqrt{2m[V(x)-E]}\right\}$$

Question: $V(x) \rightarrow V(t, x)$?

- Here: V(x) plus field $\mathfrak{E}(t)$
 - pre-acceleration
 - potential deformation
 - energy mixing
 - $E \rightarrow E + \hbar \omega$
 - displacement effect
 Kramers-Henneberger frame

C. Kohlfürst, F. Queisser, R.S., Phys. Rev. Research 3, 033153 (2021)

Adiabatic versus non-adiabatic:

Büttiker-Landauer "traversal" time

$$\mathfrak{T} = \sqrt{m} \int dx \, / \sqrt{2[V(x) - E]}$$

DRESDEN

•••

Dynamically Assisted Nuclear Fusion

 $^{2}_{1}\text{D} + ^{3}_{1}\text{T} \rightarrow ^{4}_{2}\text{He} + ^{1}_{0}\text{n} + 17.6 \text{ MeV}$

F. Queisser and R.S., Phys. Rev. C 100, 041601(R) (2019)

XFEL pulse Enhancement in j(t $A_x(t) = A_0/\cosh^2(\omega t)$ $\omega = 1 \text{ keV} \& 10^{16} \text{ V/m}$ Initial kinetic energy $\mathcal{E} + \hbar \omega$ F = 2 keV~~~~~~ 10 13 16 19 22 Oscillating XFEL fields t[as] $r_{\mathcal{E}}$ \rightarrow resonances at $\omega = F$ D.Ryndyk, C.Kohlfürst, F.Queisser, R.S., DRESDEN arXiv:2309.12205

Sauter-Schwinger Effect

F. Sauter, Z. Phys. 69, 742 (1931); J. S. Schwinger, Phys. Rev. 82, 664 (1951);... Schrödinger equation (non-relativistic)

$$i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi \iff E = \frac{p^2}{2m} + V$$

Dirac equation (relativistic)

 $\gamma^{\mu} \left(i\hbar\partial_{\mu} + qA_{\mu} \right) \Psi = mc\Psi \rightsquigarrow E = V \pm \sqrt{c^2 p^2 + m^2 c^4}$

Positive and negative energy levels \rightarrow Dirac sea \rightarrow holes = positrons

Electric field: tilt $V(x) = q \mathfrak{E} x$ \rightarrow tunneling from Dirac sea

Matter from Light

Colliding XFEL pulses (Maxwell equations \checkmark transversal fields \checkmark)

Quantum Vacuum Birefringence

ruler (optically active medium) → quantum vacuum
 tension → electromagnetic fields

Light-by-light scattering: Euler-Heisenberg Lagrangian

$$\mathcal{L} = \frac{1}{2} \left(\mathfrak{E}^2 - \mathfrak{B}^2 \right) + \frac{2\alpha_{\mathsf{QED}}^2}{45m^4} \left[\left(\mathfrak{E}^2 - \mathfrak{B}^2 \right)^2 + 7 \left(\mathfrak{E} \cdot \mathfrak{B} \right)^2 \right]$$

Sub-critical fields $\mathfrak{E} \ll \mathfrak{E}_{crit} \approx 1.3 \times 10^{18} \text{ V/m}$ $\mathfrak{B} \ll \mathfrak{B}_{crit} \approx 4.4 \times 10^9 \text{ T}$ Slowly varying fields $\hbar \omega, \hbar ck \ll mc^2 \approx 511 \text{ keV}$

XFEL plus Optical Laser (plus Nuclei?)

N.Ahmadiniaz, T.E.Cowan, J.Grenzer, S.Franchino-Viñas, A.Laso Garcia, M.Šmíd, T.Toncian, M.A.Trejo, R.S., Phys. Rev. D 108, 076005 (2023)

XFEL: 10¹² photons with 6 keV

optical: 10^{22} W/cm² with 1.5 eV

•••

Signatures of the Unruh Effect with XFELs

- + entangled pairs
- + polarization + spectrum
- R. S., G. Schaller, and D. Habs, Phys. Rev. Lett. 97, 121302 (2006).
- R. S., G. Schaller, and D. Habs, Phys. Rev. Lett. 100, 091301 (2008).

Analogy: parametric down-conversion in quantum optics

 \rightarrow Bell states in the keV regime?

 \rightarrow interference of many electrons?

Summary

 $\mathfrak{E} \geq \mathcal{O}(10^{12} \text{V/m})$ vacuum birefringence

optical: 10²² W/cm²

 $\mathfrak{E} \geq \mathcal{O}(10^{12} \text{V/m})$ signatures of the Unruh effect 10⁹ coherent e^{-1}

 $\mathfrak{E} \geq \mathcal{O}(10^{16} \text{V/m})$ dynamically assisted nuclear fusion

 $\mathfrak{E} > \mathcal{O}(10^{17} \text{V/m})$ dynamically assisted Sauter-Schwinger pair creation

Pump & probe fields

N. Ahmadiniaz, T.E. Cowan, R. Sauerbrey, U. Schramm, H.-P. Schlenvoigt, R.S., Phys. Rev. D 101, 116019 (2020)

pump field (polarizes vacuum)		
magnetic field	laser focus	nuclear Coulomb field
$\mathcal{O}(10^{-9}\mathfrak{B}_{crit})$	$\mathcal{O}(10^{-4}\mathfrak{E}_{crit})$	$\mathcal{O}(\mathfrak{E}_{crit})$
$\delta n = \mathcal{O}(10^{-22})$	$\delta n = \mathcal{O}(10^{-11})$	$\delta n = \mathcal{O}(10^{-2})$
field strength $ ightarrow$		\leftarrow interaction volume
probe field (detects vacuum polarization)		
optical laser	XFEL	γ -ray
$\mathcal{O}(eV)$	$\mathcal{O}(keV)$	$\mathcal{O}(MeV)$
$N = \mathcal{O}(10^{20})$	$N = \mathcal{O}(10^{12})$	${\sf N}={\cal O}(1)$
wavenumber \rightarrow		\leftarrow photon number
PVLAS, BMV,	HIBEF	Delbrück (ATLAS)

N. Ahmadiniaz, M. Bussmann, T.E. Cowan, A. Debus, T. Kluge, R.S., Phys. Rev. D Lett. 104, 011902 (2021)

< 🗆 🕨