
Opportunities in nonlinear classical and 
quantum physics with intense XFELs

Tom Blackburn
Department of Physics, University of Gothenburg
www.gu.se/en/research/plasma-physics

19th January 2023
UK XFEL Townhall – Fundamental Physics,

Quantum Computing and AI

http://www.gu.se/en/research/plasma-physics


Opportunities in nonlinear classical and quantum physics with intense XFELS

Summary

▪ Introduction: key parameters, the nonlinear regimes

▪ XFELs as probes: vacuum birefringence

▪ XFELs as backgrounds: gamma-ray sources for nuclear photonics

▪ XFELs as drivers: wakefields in solid-density plasmas…

▪ … and Schwinger pair creation in vacuum
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Introduction

Classical nonlinearity parameter, a0

▪ Compare the characteristic frequency of 
the emitted radiation to the orbital 
(cyclotron) frequency:

▪ Harmonic order of the emitted 
radiation, or number of participating 
photons.

Blackburn, RMPP 2020
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Introduction

Classical nonlinearity parameter, a0

▪ Alternatively…

▪ Electron does not interact with one 
photon of the radiation field, but many.

▪ Determines the importance of higher 
order terms in a perturbative expansion, 
which only works if a0 is much smaller 
than one.
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Introduction

Classical nonlinearity parameter, a0

▪ Alternatively…

▪ Electron does not interact with one 
photon of the radiation field, but many.

▪ Determines the importance of higher 
order terms in a perturbative expansion, 
which only works if a0 is much smaller 
than one.

▪ If we swap out the photon energy…
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Introduction

Quantum nonlinearity parameter χe,γ

▪ … we see if the field does enough work 
over a Compton length to create an 
electron,

▪ or the field strength in the particle rest 
frame, in units of the critical 
(Schwinger) field.

▪ Then quantum effects must be 
important – even if the field amplitude 
in the lab frame is far below critical.
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Introduction

Quantum nonlinearity parameter χe,γ

▪ For a photon, vacuum polarization and 
electron-positron pair creation are 
controlled by

▪ For an electron, photon emission (and 
recoil effects) are controlled by

photon interacts with virtual electron-
positron pair of polarized vacuum

electron is scattered in strong 
electromagnetic field
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Introduction

Parameter space

low intensity,
weakly multiphoton,

use perturbation 
theory

high intensity,
quasistatic,
tunnelling,

field can be treated as 
being locally constant

optical laser + 
matter

optical laser + 
high-energy 

electron beam

Gonoskov et al, RMP 2022
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Introduction

Wavelength matters

▪ Which of nonlinear classical or 
quantum effects kicks in first depends 
on the wavelength of the strong field 
(among other things).

▪ Most research has focused on high-
power optical lasers.

▪ In this talk I will present some ideas, all 
of which rely upon the co-location of 
intense XFELs with other particle and 
radiation sources.

Gonoskov et al, RMP 2022
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XFELs as probes

The quantum vacuum

▪ Photons can interact with each other 
via fluctuating electron-positron pairs.

▪ Astrophysical applications; laboratory 
tests of strong-field QED.

▪ Many of these cross sections scale 
positively with increased frequency.

▪ Top to bottom: Delbruck scattering, 
photon splitting, four-wave mixing.
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XFELs as probes

Vacuum birefringence

▪ Cross section for four-photon scattering 
σ [cm–2] = 10–31 (ω/m)6 (ω = photon 
energy in ZMF, natural units hereon).

▪ 11 orders of magnitude larger for XFEl-
laser than laser-laser (33 for XFEL-
XFEL vs laser-laser).

▪ Use optical laser as “vacuum polarizer” 
(coherence!) and XFEL as probe 
[HIBEF, SEL etc].
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XFELs as probes

Vacuum birefringence

▪ Scattering visible in helicity change of 
the probe X rays, as if the vacuum 
refractive index were polarization 
dependent.

▪ Initially linearly polarized probe 
acquires a small ellipticity δ = 
ωXLΔn/2, where Δn = 2αIlaser/Icr.

▪ Why X rays? High polarization purity 
and precision of measurement.
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XFELs as backgrounds

Gamma-ray source

▪ Compton scattering of electrons is a 
source of polarized, monochromatic 
photons.

▪ The 10 to 100 MeV range useful for 
nuclear photonics: excitation of 
resonances, transitions etc

▪ e.g. 720 MeV electrons + 1 eV optical 
laser (ELI-NP)

▪ or 1 GeV + 1 to 5 eV FEL (HIGS)
13
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XFELs as backgrounds

Gamma-ray source

▪ To achieve the same photon energies 
by scattering XFEL light requires lower 
electron energies.

▪ Example: 100 MeV or 1 GeV electrons 
+ 200 eV light @ 1019 W/cm2 (300 
cycles in duration)
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XFELs as backgrounds

Gamma-ray source

▪ To achieve the same photon energies 
by scattering XFEL light requires lower 
electron energies.

▪ Example: 100 MeV or 1 GeV electrons 
+ 200 eV light @ 1019 W/cm2 (300 
cycles in duration)

▪ Gammas inherit polarization properties 
of the XFEL light: linear, circular etc

▪ Monochromatise by angle selection
15
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XFELs as backgrounds

Gamma-ray source

▪ How far can one go?

▪ Multi-GeV polarized gammas needed 
for hadron studies in strange sector / 
photoproduction of QCD exotics

▪ LEPS2 @ Spring-8 (ICS with 8-GeV 
electrons + VUV), GlueX (coherent 
bremstrahlung)

▪ At 10 GeV, Compton edge at 9.7 GeV.
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XFELs as backgrounds

Radiation reaction in the deep quantum regime

▪ Recoil effects on the electron beam are 
significant!

▪ Investigation of radiation reaction with 
optical lasers usually in the regime 
where single-photon recoil is much less 
important than the accumulated recoil 
from many emissions.

▪ Importance of “spin light” increased.
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XFELs as drivers

▪ Solid-density plasmas become 
underdense at XUV/X-ray wavelengths: 
λp [μm] = n–1/2 [1021 cm–3]

▪ As an example, a relativistically intense 
XUV pulse could drive wakefield
acceleration of electrons [Tajima 
EPJST 2014].

▪ a0 > 1 ⇒ I > 1024 (λX [nm])–2 W/cm2

XWFA
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XFELs as drivers

▪ Scaling wakefield acceleration to XUV 
wavelengths relies on similarity theory 
(S = ne/a0ncr).

▪ But not all physics scales with this 
parameter, e.g. radiation generation 
(betatron or nonlinear Compton) 
[Zhang PRAB 2016].

▪ PIC simulations show it holds to a 
wavelength of 1 nm.

XWFA
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XFELs as drivers

▪ Motivation might be accelerating 
gradient (TeV/cm)…

▪ or perhaps the current density or 
electron bunch duration.

▪ For densities of 1023 to 1025 cm–3, 
cavity size implies an equivalent 
duration of 10–17 to 10–15 seconds.

XWFA
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XFELs as drivers

How do fields interact?

▪ Maxwell’s equations are linear, at but 
ultrahigh field strengths this is not an 
adequate description anymore.

▪ Vacuum polarisation (photon-photon 
scattering, birefringence, dichroism)

▪ Schwinger pair creation/vacuum pair 
creation
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XFELs as drivers

Schwinger effect

▪ The action for a static electric field 
acquires an imaginary part that is non-
perturbative in the electric field 
strength.

▪ The characteristic field strength 
required is Ecrit = 1.3×1018 V/m…

▪ … which corresponds to an intensity of 
2×1029 W/cm2

not to be taken too literally…
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XFELs as drivers

Reaching critical/supercritical field strengths

▪ 2×1029 W/cm2 ?

▪ Aside from the technological 
challenges(!), it’s likely impossible to 
reach an intensity anywhere near this 
with optical lasers because of pair 
avalanches [Bulanov et al, PRL 2010; 
Fedotov et al, PRL 2010].

▪ Routes toward “extremer” extreme field 
science rely on some means of 
conversion to higher frequencies.

conversion of optical laser to XUV via plasma 
interaction [Gonoskov et al, HPLSE 2023]
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XFELs as drivers

Reaching critical/supercritical field strengths

▪ Takes advantage of smaller focal spot 
sizes at shorter wavelength

▪ … and suppression of pair avalanche 
growth due to volume factors.

▪ In principle, Schwinger pair creation 
observable with a terawatt XFEL… 
focused to nm focal spot sizes 
[Ringwald, PLB 2001]
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XFELs as drivers

Reaching critical/supercritical field strengths

▪ Rate depends on invariants E2 – B2 and 
E.B, not the electric field strength 
alone.

▪ Theory question: does a quasistatic 
model of pair creation work at high 
frequency/field gradient?

▪ “Assisted” Schwinger pair creation: 
reduce field strength required by 
combining the driver with other high-
frequency EM waves.
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